€Y Routledge

g Taylor &Francis Group

Computer Science Education

ISSN: 0899-3408 (Print) 1744-5175 (Online) Journal homepage: http://www.tandfonline.com/loi/ncse20

Breaking the communication barrier: guidelines to
aid communication within pair programming

Mark Zarb & Janet Hughes

To cite this article: Mark Zarb & Janet Hughes (2015) Breaking the communication barrier:
guidelines to aid communication within pair programming, Computer Science Education, 25:2,
120-151, DOI: 10.1080/08993408.2015.1033125

To link to this article: http://dx.doi.org/10.1080/08993408.2015.1033125

@ Published online: 23 Apr 2015.

N
CJ/ Submit your article to this journal &

||I| Article views: 207

A
& View related articles &'

@ View Crossmark data (&'

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=ncse20

(Download by: [b-on: Biblioteca do conhecimento online UL] Date: 03 March 2016, At: 08:38)

http://www.tandfonline.com/action/journalInformation?journalCode=ncse20
http://www.tandfonline.com/loi/ncse20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2015.1033125
http://dx.doi.org/10.1080/08993408.2015.1033125
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/08993408.2015.1033125
http://www.tandfonline.com/doi/mlt/10.1080/08993408.2015.1033125
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2015.1033125&domain=pdf&date_stamp=2015-04-23
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2015.1033125&domain=pdf&date_stamp=2015-04-23

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education, 2015 é Routledge
Vol. 25, No. 2, 120151, http://dx.doi.org/10.1080/08993408.2015.1033125 AW Toloréfands Group

Breaking the communication barrier: guidelines to aid
communication within pair programming

Mark Zarb™ and Janet Hughes®

“School of Computing Science and Digital Media, Robert Gordon University, AB10 7GJ,
Aberdeen, Scotland, UK; *School of Computing, University of Dundee, DD1 4HN, Dundee,
Scotland, UK

(Received 15 November 2014; accepted 16 January 2015)

Pair programming is a software development technique with many cited
benefits in learning and teaching. However, it is reported that novice
programmers find several barriers to pairing up, typically due to the
added communication that is required of this approach. This paper will
present a literature review discussing the issue of communication, and
through a series of observations with industry-based pairs, will derive a
set of guidelines which aim to help novice pairs experience better
communication within their pairs. An evaluation of the guidelines with
undergraduate students is then reported, showing that exposure to these
guidelines improved the self-perceived communication experience of
novice pairs.

Keywords: pair programming; communication; guidelines; evaluation

1. Introduction

Pair programming is a software development technique where two program-
mers work together side-by-side on the same machine to achieve their goals.
This technique gained popularity in the early 2000s when it was presented
as a key practice of the Extreme Programming software development
methodology (Beck, 2000). An examination of the literature dates its use
back to the early 1980s (Constantine, 1995), with empirical studies dis-
cussing the benefits of having two programmers dating back to 1993
(Wilson, Hoskin, & Nosek, 1993).

Many benefits of pair programming are reported for both novices and
experts, including the pair experiencing a greater enjoyment of the work at
hand, an increased knowledge distribution, and the production of better
quality code (Cockburn & Williams, 2001). Further benefits are discussed
when considering pair programming specifically in an educational context:

*Corresponding author. Email: m.zarb@rgu.ac.uk

© 2015 Taylor & Francis

mailto:m.zarb@rgu.ac.uk
http://dx.doi.org/10.1080/08993408.2015.1033125

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 121

students are more engaged in their collaboration and seem more satisfied
with their final work (Williams & Kessler, 2001).

In spite of these benefits, some developers are sceptical of their first pair
experience and of its promised collaborative value (Williams & Kessler,
2000), citing doubts about their partner’s work habits and the added commu-
nication demands that this style of programming requires. Communication
itself is frequently cited as a common barrier to pair programming by
novices (e.g. Begel & Nagappan, 2008; Cockburn & Williams, 2001). How-
ever, if a pair does not communicate, they are not pair programming, but
effectively they are only reviewing each other’s code. Pairs cannot program
without exhibiting a certain amount of communication: “Effective pairs chat-
ter; silence is a danger signal” (Williams & Kessler, 2002). Within the litera-
ture, it can be seen that communication is not only an integral contributor to
the success of pair programming, but also one of the main causes of its fail-
ure (Begel & Nagappan, 2008; Murphy, Fitzgerald, Hanks, & McCauley,
2010; Sanders, 2002).

This paper presents research which investigates common communication
patterns and trends displayed by expert pairs of programmers. This allows
for an understanding of how intra-pair communication is structured. This
knowledge is then cast into guidelines and examples which could be used to
assist novice pair programmers in learning to communicate more effectively
when working together.

2. Background research
2.1. Pair programming: an introduction

Pair programming is widely used in academia (Katira, Williams, & Osborne,
2005), where it is typically introduced in tertiary education. This approach
to programming is shown to encourage programmers to talk to each other
and to themselves — this “pair pressure” adds benefits such as greater enjoy-
ment and increased knowledge distribution (Bryant, Romero, & du Boulay,
2006; Williams & Kessler, 2001).

Within the classroom, pair programming is seen to be valuable (Begel &
Nagappan, 2008; Hanks, 2006; Williams & Kessler, 2002). Its usage has
been reported in educational contexts in the United States, the United King-
dom, Germany, New Zealand, India and Thailand (Hanks, Fitzgerald,
McCauley, Murphy, & Zander, 2011). Students working in pairs are seen to
be more satisfied, solve problems faster than non-paired students, and have
improved team effectiveness (McDowell, Hanks, & Werner, 2003; Srikanth,
Williams, Wiebe, Miller, & Balik, 2004; Williams, Kessler, Cunningham, &
Jeffries, 2000). Pair programming among students is not a deterrent to indi-
vidual student performance (Johnson & Caristi, 2001): pairing students were
shown to be more likely to complete courses related to computer science
and achieve a successful grade for their assignments when compared with

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

122 M. Zarb and J. Hughes

their solo counterparts, as well as gaining an improved comprehension of
unfamiliar topics (Braught, Eby, & Wahls, 2008; Nagappan et al., 2003;
Williams, Wiebe, Yang, Ferzli, & Miller, 2002). Similarly, Porter, Guzdial,
McDowell, and Simon (2013) reported that paired students had a higher
pass rate than their solo peers and were more likely to continue on the next
course. Students who were exposed to pair programming in the classroom
reported that having a partner with whom to discuss unfamiliar topics was
helpful (Cliburn, 2003) and that this improved their comprehension of unfa-
miliar topics (Kavitha & Ahmed, 2015). Interestingly, Hanks (2006) shows
that paired students experienced the same problems and struggles encoun-
tered by solo students, despite the benefits afforded by a pairing approach.

Initial observations with student programmers learning to work in pairs
reveal several benefits to this approach (Werner, Hanks, & McDowell, 2004;
Williams & Kessler, 2001). Students working in pairs answer each other’s
questions, rather than considering their instructor as the only source of
advice — which contributes to the students’ learning process. The use of pair
programming, and the subsequent “pair pressure”, causes students to work
on projects earlier and to budget their time more wisely. Pair programmers
took less time to complete set tasks (DeClue, 2003), and programs produced
by paired students were seen to be significantly better than programs pro-
duced by individual student programmers. Students surveyed by Sanders
(2002) following an initial experience of pair programming reported on
experiencing a skewed perception of time, in which they felt they worked
for less time than they actually did.

Williams et al. (2002) show that student pairs displayed a higher confi-
dence and a more positive attitude in their project work when compared to
solo student developers. Furthermore, pair programming has been proven to
be useful in a learning environment for solving problems and complex tasks,
and finding mistakes in simple code segments (Hulkko & Abrahamsson,
2005; Williams & Kessler, 2002). Programming students agree that they
have more confidence in their final solution when it is achieved through pair
programming (Williams & Kessler, 2000), and perceived pair programming
as being valuable to their learning (VanDeGrift, 2004). The process of pair
programming leads to students who are more satisfied with their work
regardless of their ability and grade level (Kavitha & Ahmed, 2015;
Vanhanen & Lassenius, 2005), and who are more self-sufficient. The student
perception of pair programming on various tasks was examined by
Chaparro, Yuksel, Romero, and Bryant (2005), who reported that when con-
sidering program comprehension, refactoring and debugging, students were
effective across all three.

There are several reports which cite issues the students have with this
approach. For example, Thomas, Ratcliffe, and Robertson (2003) indicate
that their less successful paired students mentioned being frustrated, guilty
and feeling like they had wasted their time. This pair incompatibility can be

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 123

a great cause of concern for students, with studies showing that amongst
groups of students, those with a higher skill level report the least satisfaction
when paired with students who are less skilled (Thomas et al., 2003).

Melnik and Maurer (2002) discuss various issues observed in the class-
room, noting that some students found the pairing element particularly diffi-
cult, and “could not trust other people’s code”. Furthermore, approximately
50% of first-time student pair programmers reported that the various forms
of difficulties within the pair contributed to communication being the main
problem with the pair programming process (Sanders, 2002).

2.2. Communication within pair programming

Pair programming is a highly communication-intensive process, consisting
of both verbal and non-verbal forms of communication (Sharp & Robinson,
2010). Williams and Kessler (2002) write that effective communication
within a pair is paramount and that lengthy periods of silence within the pair
should be considered a danger signal. Furthermore, several studies, both in
industry and in academia, have concluded that apparent successes of pair
programming are due to the amount of verbalisation that this style of coding
requires (Chong & Hurlbutt, 2007; Freudenberg, Romero, & Du Boulay,
2007; Hannay, Dyba, Arisholm, & Sjeberg, 2009).

An experiment conducted by Bryant et al. (2006) shows that in expert
pairs, the communication distribution between the driver and the navigator
is 60:40, respectively. After analysing 23 h of dialogue produced by pair
programmers, the researchers conclude that “the benefits attributed to pair
programming may well be due to the collaborative manner in which tasks
are performed” (Bryant et al., 2006).

Watzlawick, Bavelas, and Jackson (1967) consider that within profes-
sional relationships there is a necessity for constant communication. This
necessity can be seen within pair programming: Flor and Hutchins (1991)
observe that the exchange of ideas, feedback and constant debate — thus,
communication — between two programmers collaborating on a software
maintenance task significantly reduced the probability of ending up with a
poor design. Wilson et al. (1993) show that in an academic context, collab-
orative work benefits problem-solving efforts: teams that were allowed to
communicate whilst working on a software development task were seen to
have a higher confidence in their solution.

Industrial developers surveyed by Begel and Nagappan (2008) define a
prospective partner with good communication as one who embodies the
following qualities:

* A good listener;
* Articulate;
» Easy to discuss code with;

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

124 M. Zarb and J. Hughes

* Very verbal, to make the thought process easy to understand;
* Enjoys debating and discussing code;
* Asks questions and provides opinions.

Communication is considered to be a “vital aspect of pair programming”
(Lindvall et al., 2002), whilst Beck (2000) writes that it is “the first value of
pair programming”, and that coding standards should emphasise communica-
tion. Aiken (2004) reports that when pair programming, “no more than a min-
ute should pass without verbal communication”. The area of communication
within pair programming is seen as an important topic of research interest
(Stapel, Knauss, Schneider, & Becker, 2010), and it is also considered “one of
the most important factors” within software engineering (Gallis, Arisholm, &
Dyba, 2003). Furthermore, surveyed developers at Microsoft have rated “good
communication skills” as being a top attribute for good pair programming
partners (Begel & Nagappan, 2008), and it is seen as an “integral” concept for
agile methodologies as it helps people to work better when partnered
(Cockburn & Williams, 2001; Nawrocki & Wojciechowski, 2001).

Whilst existing research shows that communication is intrinsic to the pair
programming process, different authors are using different measures when
investigating the value of communication in pair programming. Two studies
serve to illustrate this point, each of which considered levels of communica-
tion within pairs. Firstly, Sfetsos, Stamelos, Angelis, and Deligiannis (2006)
found that for a group of pair programming students, there was a significant
positive correlation between the number of communication transactions
within the pair and the pair’s productivity. Secondly, Choi, Deek, and Im
(2009) found no correlation between a high level of communication and (i)
satisfaction, (ii) compatibility between partners or (iii) confidence regarding
the finished product. Communication thus is being investigated in terms of
the end product and the process, particularly the experience of the social
interaction.

Freudenberg et al. (2007) write: “the cognitive aspects of pair program-
ming are seldom investigated and little understood”. In one study examining
communication per se, Stapel et al. (2010) hypothesise that there could be a
difference in the rate of communication between novice pair programmers
(defined as “new to pair programming and unfamiliar with each other”) and
professional ones (not explicitly defined in Stapel et al.’s paper, but used to
indicate “experienced” pairs from discussed studies, i.e. industry-based
pairs). The authors believe that this is due to the fact that a more experi-
enced and confident pair will probably be more at ease with communicating
and sharing ideas, whereas a more novice pair may be concerned about
repercussions to sharing the wrong idea. The communication (or lack
thereof) within a pair might determine the success of a pair programming
exercise: if the pair does not communicate, then the programmers are only
reviewing each other’s code (Gallis et al., 2003).

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 125

Despite the centrality of communication referenced in the literature
above, practical issues with pair programming communication remain. As an
example, the communicative collaboration required by pair programming
can cause discomfort for both the driver and the navigator (Cockburn &
Williams, 2001), leading to reduced communication effectiveness and lower
productivity (Aiken, 2004). Whilst communication is an important and
essential aspect of pair programming, it can also be an issue and a barrier
for first-time pair programmers in both industrial (Begel & Nagappan, 2008;
Williams et al., 2000) and academic (Sanders, 2002) contexts. The literature
posits interesting questions about communication, but ultimately, it can be
seen that many authors simply view communication as the essence of paired
programming, and as a result, do not investigate how communication hap-
pens within pairs and how it is or is not effective (Sharp & Robinson, 2010;
Stapel et al., 2010).

2.3. Existing pair programming guidelines

Bevan, Werner and McDowell (2002) observe that the structure of the class
can fail to encourage a consistent pair programming environment. They
therefore present a number of guidelines to be used as a framework by
instructors interested in adopting pair programming. Some of these guideli-
nes belong under headings such as: pair within sections, pair by skill level,
institute a coding standard and create a pairing-oriented culture. Similarly,
Williams, McCrickard, Layman, and Hussein (2008) draw on over seven
years of teaching experience in order to establish eleven guidelines for class-
room management when pair programming is being used. These guidelines,
like Bevan et al.’s, are aimed towards instructors, providing additional sup-
port on the points such as the following: supervised pairing experience,
teaching staff pair management, balancing individual and collaborative
work, and pair programming ergonomics.

With regard to student-based guidelines, several authors make reference
to giving students a paper by Williams and Kessler (2000) as “guidelines to
introduce the pair programming concepts” (McDowell et al., 2003; Mendes,
Al-Fakhri, & Luxton-Reilly, 2005; VanDeGrift, 2004). Williams and Kessler
(2000) describe the basics of pair programming under headings such as
share everything, play fair, don't hit your partner, put things back where
they belong, etc. In a separate paper, Williams et al. (2000) refer to these
headings as “guidelines for transitioning from solo to pair programming”.
More recently, a number of amateur and some professional produced videos
have been released that give an introduction to and some advice about pair
programming (e.g. Williams (2008), or a video produced by Code.org.")
Williams’ video (2008) presents a valuable set of things to do (including
talk, listen, rotate roles, be patient, respect your partner, take breaks, pre-
pare) and things not to do (including “be quiet”).

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

126 M. Zarb and J. Hughes

The resources cited present sets of guidelines targeted towards solo
programmers or instructors, but none mention the process used to create the
guidelines, with each paper drawing on the author’s observations and experi-
ences to inform and create the guidelines.

To the best of our knowledge, there are no scientifically derived guidelines
aimed for novice programmers; in particular, students instructing them on how
to cope with various scenarios that may be encountered during a typical pair-
ing session. It is posited that such guidelines may dispel some of the discom-
fort and scepticism faced by novice programmers needing to try this approach.

3. Observing pair communication

A better understanding of communication within pair programming could
lead to improved teaching practices for pair programming novices, which in
turn would allow them to communicate more effectively within their pairs.
Observing experienced pair programmers working together could provide
information to help understand how they communicate with each other.

A framework for the coding and analysis of verbal data has been
described by Chi (1997) and was subsequently used in the context of pair
programming by Bryant (2004) for the observation of industry-based pairs.
This process consists of the following stages:

1. Developing a coding scheme through open coding;

2. Segmenting and coding the sampled transcripts based on the coding
scheme;

3. Seeking and interpreting patterns.

This framework can be applied to a grounded theory approach in order
to create stages upon which the observation stages of this paper can be built
the following: communication data can be collected (via ethnographic
observations, videos, etc.) and then used for data analysis purposes. By
being immersed in the data, the researcher can develop codes and categories,
which can continue iteratively until no new categories or properties emerge
from the gathering or analysis of further data (Glaser & Strauss, 1967;
Montgomery & Bailey, 2007). The analysis of these codes can then lead to
patterns of pair communication being drawn out from the data.

A series of observations were carried out in three separate settings in
order to gain an understanding of the various observed “states” of commu-
nication, and how the pair transitioned between these different states.

The three settings are as follows:

* pairwith.us
A series of videos has been created by two software engineers with
the aim of introducing agile software development to a wider audience.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 127

Both members of the pair are agile coaches and programmers with over
ten years of industry experience at the time of filming. The video out-
put consists of sixty unscripted pair programming videos, all broadcast
online between April and July 2009. Following each broadcasting ses-
sion, the videos were archived without any post-processing or editing.
A repository of the videos is made publically available under the name
“pairwith.us” (at http://vimeo.com/channels/pairwithus).

* Company 1 (C1)

C1 is a company which focuses on delivering high quality broad-
band and telephony around the UK. The team at C1 use agile
methodology constantly, implementing practices such as scrum and
Extreme Programming. A total of six pairs (all male) were observed at
Cl, with each session lasting roughly one hour. Individually, the
developers (n = 12) reported industrial pair programming experience of
4.92 + 2.30 years.

* Company 2 (C2)

C2 is one of the leading global technology platforms for social
video distribution and analytics. Several teams within C2 use agile
practices to continuously test and develop their technology. A total of
five pairs (four of which were both male, and one of which was mixed)
were observed at C2, with each session lasting roughly one hour. Indi-
vidually, the developers (n = 10) reported industrial pair programming
experience of 2.02 £ 1.79 years.

By conducting observation sessions (for C1 and C2) and analysing exist-

ing videos (for pairwith.us), the researcher was able to collect over forty
hours of pair programming communication. This databank was thoroughly
analysed using an approach informed by grounded theory, in order to:

1. Find common communication states across all three scenarios.
2. Understand how the observed pairs transitioned between the different
communication states.

A detailed description of how this analysis was performed is given

elsewhere (Zarb, Hughes, & Richards, 2012). The analysis showed that the
observed pairs were frequently experiencing one of seven possible commu-
nication states:

* Review

» Suggestion

* Explanation

* Code discussion

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

128 M. Zarb and J. Hughes

* Muttering
* Unfocusing
* Silence

Further analysis derived a set of common transitions which the pairs
were observed to experience (Zarb, Hughes, & Richards, 2013); for exam-
ple, pairs were frequently observed to make a suggestion, then follow up by
explaining it further. Figure 1 gives a summarised version of these results,
showcasing the most common transitions between the communication states.

A guideline is, by definition, a general rule or a piece of advice, synony-
mous with a recommendation or a suggestion: an indication of a future
course of action. The following section discusses certain conversational pat-
terns within the larger context of the transitions diagram (Figure 1) and

extracts guidelines from these patterns.

UNFOCUSING

SILENCE

SUGGESTION

CODE
DISCUSSION

MUTTERING

REVIEW

EXPLANATION

Figure 1. Common states and transitions in pair communication.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 129

3.1. Extracting patterns and generating guidelines

In order to better understand the transitions depicted above, Figure 1 was
segmented into several subsections by consulting the frequency with which
the transitions happened. Each subsection was verified with the pairwith.us
team as the depiction of a different stage of the communication process
within pair programming. Each subsection is referred to as a “pattern”,
representing the different communication states a pair can experience, and
the various ways of transitioning between these states. Each extracted pat-
tern was used to form the basis for a set of guidelines.

Whereas each code represents a different communication state for a pair,
each pattern represents different stages of the pairing process. Patterns can
illustrate a whole set of communication states describing, for example, a
reviewing cycle, or actions leading to the pair deciding to take a break from
their current task.

Figure 1 was segmented into three patterns: one that looks at all possible
outcomes from an Unfocusing state; and two which consider certain repeated
behaviours. The identified patterns are as follows:

1. A pattern linking Unfocusing, Review, Silence and Suggestion on the
top half of the diagram, explaining actions that follow an Unfocusing
event. This is called the Restarting Pattern;

2. A pattern linking Review, Explanation and Suggestion on the right-
hand side of the diagram, showing repeated communication behaviour.
This is called the Planning Pattern; and

3. A final pattern linking Muttering, Code Discussion and Suggestion on
the bottom left of the diagram, showing repeated communication
behaviour. This is called the Action Pattern.

4. The guidelines

Instances of each pattern were observed in the pair videos and reviewed in order
to explore why and how certain patterns were being exhibited. At this stage,
observed pairs were consulted about the existence of these patterns. They con-
firmed that these were behaviours that they recognised within their own pair
communication. Discussions with a member of teaching staff (experienced with
teaching agile) within the University of Dundee were used to identify guidelines
and to structure these in a suitable way for educational purposes.

The pair programming communication guidelines were therefore created
to give users more insight into the instructions offered by these patterns.
The aim of the research is to investigate whether providing novice pairs
with communication patterns from expert pairs will allow them to improve
their intra-pair communication. By extracting these communication patterns
from the observation sessions, it was possible to present the knowledge

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

130 M. Zarb and J. Hughes

uncovered thus far in a manner that would best benefit novice student pairs.
The three patterns are presented next.

4.1. The restarting pattern and guidelines

At several points during the observations, pairs were observed to completely
change the topic of discussion from their current work to a more casual
topic. For instance, during the pairwith.us videos, a member of the pair sud-
denly interrupts the coding process and starts talking about his Father’s Day
plans. Similarly, in a separate observation, the pair starts to discuss a
recently released film that they had both watched.

Informal discussions with some of the observed industry pairs indicate that
these interruptions are usually conscious ones: whenever a pair was stuck for
a period of time, they would make an effort to break their focus by stopping
their current actions and move onto an unrelated topic of discussion.

This is described here as the Restarting Pattern (Figure 2).

Figure 2 shows that Unfocusing is most commonly followed by one of
three communication states: reviewing, suggesting and silence. An example
of each is given next:

* A reviewing action. The following conversational snippet shows a pair
unfocusing (by making jokes about the driver’s age), then transitioning
into a reviewing state:

D: I've had to turn the font size up. I'm blind.

N: No, you're getting old!

D: I should be wearing glasses, I'm just being stubborn. We had just
finished with the casting agent, it was being stubborn.

N: The test is still very much testing the details of the librarian.

UNFOCUSING
REVIEWING SUGGESTING SILENCE

Figure 2. The restarting pattern.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 131

* A suggestion. This conversational snippet shows the pair making jokes,
with the navigator choosing to bring back focus by making a sugges-
tion for the next stage in their work plan.

D: So what you 're saying is “Terror Wrist”.

N: Yeah, explain the joke. That makes it so much funnier.

D: All my jokes are bad. (laughs)

N: Look at that. You probably want to implement “help actors get out
of character”.

D: Good idea.

* Complete silence. The following conversation shows a pair suddenly
unfocusing when the navigator interrupts the coding process. Both pro-
grammers have a brief discussion and then engage in a silent period.
This typically ends after the navigator makes a suggestion related to
the code.

N: “Don't chop the dinosaur, daddy!”
D: (laughs) Seek help. Whats that from?
N: It’s from an Australian advert.
D: Right. OK. You keep saying that.

(A period of silence follows.)

Three guidelines suggested by this pattern (Figure 2) are as follows:

* If you and your partner are stuck in a silent period and cannot seem to
progress, actively break your focus by discussing something completely
off-topic and unrelated to the issues at hand. This will allow you to
tackle the problem with a fresh outlook.

* Following this stage, attempt to:

o Look back on your last couple of steps and review your previous
work (review);

o Identify a fresh start (suggest);

o Try to think about your end goal when suggesting next steps, in
order to make progress (think/be silent).

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

132 M. Zarb and J. Hughes

» If your partner is attempting to break focus, do not dismiss this.
Breaking one’s focus using jokes and private conversations can lead
to a fresh perspective, which you and your partner may need.

4.2. The planning pattern and guidelines

Following a Suggestion, a pair was sometimes likely to review the existing
code to understand how refining it might help them achieve their main goal.
As part of this conversation, one of the pair would typically explain the
underlying structure or any legacy code that might be unfamiliar to their
partner. This is presented in Figure 3.

The following conversation illustrates the driver making a suggestion, the
navigator reviewing current procedures and then proceeding on to explaining
their reasoning.

D: It still feels like we're missing something. We're getting closer to
the general solution, though. I'll stick closer to what I have on

screen.
N: We have c, then b... and atob... and b to c... to d.
D: Yep.
N: At the moment we’re eagerly calling a to lock a off- If I don't do

this, obviously it’s going to carry over.

REVIEWING

SUGGESTING

EXPLAINING

Figure 3. The planning pattern.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 133

A suggestion could also separately lead to an explanation — for example,
whilst discussing a method, rather than reviewing the code structure, the pair
would explain implications that the method would have with respect to their
goal. This concept, as well as that of a member asking for clarification by their
partner, is also seen as a way to avoid the pair becoming disengaged (Plonka,
Sharp, & van der Linden, 2012). The following shows a navigator making a
suggestion and then further explaining how it would impact the written code.

N: Could you — double dash. It’s one over...

D: Yeah?

N: It’s actually a funny thing. If you whip out an agent test rvight now,
it would generate itself. Because you told it to. Do you get it?

This pattern (Figure 3) occurred most often at the start of the pairing ses-
sion: the sessions observed typically started with the pair reviewing legacy
code and attempting to devise ways to reduce error messages or solve prob-
lems.

Three guidelines suggested by this pattern are as follows:

» Suggestions and reviews are both useful states that will allow you to
drive your work forward. When in these states, feel free to communi-
cate about a range of things; a potential cycle could be as follows:

o Review previous code
o Suggest an improvement

SUGGESTING

|

MUTTERING

CODE
DISCUSSION

Figure 4. The action pattern.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

134 M. Zarb and J. Hughes

o Review methods to be changed
o Suggest potential impact

* At any stage, do not hesitate to ask your partner for clarification
about any suggestions that they make, or actions they are working
on that you do not necessarily understand.

* Think about what your partner is saying and doing. Offering an
interpretation of your own understanding of the current state can
help move the work forward.

4.3. The action pattern and guidelines

The Action Pattern (Figure 4) occurred mostly whilst a pair was trying to
create code. These instances would typically consist of a member of the pair
making a suggestion as to what should be coded, or how certain code
should be tackled.

The pair would then either talk about the code, or, alternatively, the dri-
ver would start muttering. The muttering frequently led to the navigator
making suggestions based on what the driver was saying, which acted as a
prompt for discussions.

The following example shows the navigator suggesting next stages (in
this case, to code a certain test). The driver starts muttering. After a while,
the navigator interjects, discussing the benefits of the current approach.

N: Excellent. The method'’s completed. I guess it’s time to go on and
do the test now.

D: (muttering whilst typing code and running commands)

N: (reacting to the completed method, and the expected results of the
test) I think its a good example of the level of feedback and the
cycle time.

Writing code is generally handled by the driver, rather than both mem-
bers of the pair, thus guidelines arising from this pattern are targeted
towards individual members of the pair:

* (for the driver): Whilst you are programming or thinking about how to
structure your code, try to be more verbal — for example, by muttering
whilst you are typing. This tends to help the navigator to know that you
are actively working, and have a clear sense of how you are approach-
ing the task at hand. If you verbalise your thoughts, this will help the
navigator make informed suggestions based on your current actions.

* (for the navigator): Whilst the driver is programming, actively look to
make suggestions that contribute to the code.

Computer Science Education 135
* (for the navigator): If the driver is muttering, use this opportunity to

make sure your suggestions have been properly understood.

4.4. The communication guidelines
Figure 5 summarises the communication guidelines extracted from the

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

patterns depicted in Figure 1.

Following this stage,
attempt to:
- Look back on your
last couple of If your partner is
If you and your partner are stuck steps and review | attempting to break
in a silent period and cannot seem your previous focus, do not dismiss this.
to progress, actively break your work (review); Breaking one’s focus
5 focus by discussing something - ldentify a fresh using jokes and private
Restarting : .
completely off-topic and unrelated start (suggest); conversations can lead to
to the issues at hand. This will - Try to think about | a fresh perspective,
allow you to tackle the problem your end goal which you and your
with a fresh outlook. when suggesting | partner may need.
Next steps, in
order to make
progress
(think/be silent).
Suggestions and reviews are both
useful states that will allow you to
drive your work forward. Whenin | At qny stage, do not Think about what your
these states, feel free to hesitate to ask your : .
communicate about a range of partner for p"’,“"‘” S o
things; a potential cycle could be clarification about any fiﬂll‘lg. Offe_r e an
. ! ; interpretation of your
Planning | as follows: suggestions that they -
: . : own understanding of
- Review previous code make, or actions they
2 : the current state can
- Suggest an improvement are working on that help fiiove the work
- Review methods 10 be you do not necessarily i
changed understand. ’
- Suggest potential impact
(for the driver): Whilst you are
programming or thinking about
how to structure your code, try to
be more verbal — for example, by | (for the novigotor):
muttering whilst you are typing. Whilst the driver is (for the navigator): If the
This tends to help the navigator to | programing, actively driver is muttering, use
Aition know that you are actively look to make this opportunity to make
working, and have a clear sense of | suggestions that sure your suggestions
how you are approaching the task | contribute to the have been properly
at hand. If you verbalise your code. understood.
thoughts, this will help the
navigator make informed
suggestions based on your current
actions.

Figure 5.

The communication guidelines.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

136 M. Zarb and J. Hughes

5. Evaluation of the guidelines

Quantitative results would provide an understanding of the effects that
guidelines have on novice students and on their pair programming experience.
To that end, a series of studies were designed to understand whether the
guidelines can positively impact the students’ experience of communication.
In the earlier review of the literature, it was seen that “communication” is
often seen as a barrier to successful pair programming for first-time pairs
(Begel & Nagappan, 2008; Sanders, 2002; Williams et al., 2000). Further-
more, unequal participation is one of the top perceived problems for students
(Srikanth et al., 2004; VanDeGrift, 2004). As the guidelines have been devel-
oped to improve this communication, the studies were designed to investigate
these two issues, with pairs reporting on their experience of communication,
particularly with respect to how easily they were able to communicate with
their partner (referred to as “ease of communication”) and on their partner’s
contribution to the pairing session (“perceived partner contribution”).

5.1. Study design

Pairs of students were recruited and randomly allocated to one of two
groups: a treatment group, which would be exposed to the guidelines prior
to the set task, and a control group. Each pair was asked to complete as
many tasks as possible from a given set during a 45-min time period. Stu-
dent success was measured in terms of correct solutions.

This was followed by a five question post-test survey to be completed
individually by each participant. Two questions queried the individual on
their experience of development as a solo programmer and/or as a pair pro-
grammer. These questions were used to determine whether there was any
significant difference between the groups that could bias the results. The
remaining three questions asked the individual to rate their perception of the
benefit of pair programming over traditional programming, the ease of
communication during the session, and to rate their partner’s contribution.
Students were also asked to note which role they had assumed (i.e. driver or
navigator) during the recorded session.

Likert scale data were analysed to determine whether there were any sta-
tistically significant differences between the treatment group students who
were exposed to the guidelines and the control group students who were
not, in terms of their prior programming experience and in respect of the
reported ease of communication and partner contribution.

The following null hypotheses are tested as follows:

1. Ho: The distribution of the pair’s ease of communication is equal
across the two groups.
Ha: The distribution of the pair’s ease of communication differs by
exposure to the guidelines.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 137

2. Hy: The distribution of the pair’s perceived partner contribution is
equal across the two groups.

Ha: The distribution of the pair’s perceived partner contribution dif-
fers by exposure to the guidelines.

3. Ho: The mean number of completed tasks for pairs who were exposed
to the guidelines and pairs who were not exposed to the guidelines is
equal in the population.

Ha: The mean number of completed tasks for pairs who were exposed
to the guidelines and pairs who were not exposed to the guidelines is
not equal in the population.

5.2. Method
5.2.1. Participants

An e-mail was circulated to undergraduate students reading for a Computing
degree, inviting them to participate. A total of 28 participants were recruited
(Level 1: 10 students; Level 3: 18 students), all of whom had previously
used Java as a programming language throughout their courses. Ethical
approval was obtained from the School’s Ethics Board for all participants
and all aspects of the studies.

Pairs were set up so that each pair consisted of students at the same level
of study. Within each level, 50% of the pairs were randomly allocated to the
treatment group which would be exposed to the guidelines (n =7 pairs),
leaving the rest of the sample (n = 7 pairs) as the control group.

5.2.2. Materials

One of the summer school programmes at the University of Dundee’s
School of Computing uses a custom programming tool that has been
developed to teach programming topics: the Abstract Programming Envi-
ronment (APE).? The APE tool runs on the NetBeans IDE and provides a
graphical front end (Figure 6) which can be manipulated using Java code.
This allows students to “see” what they are programming. The APE tool
includes several challenges (or “maps”) in which students need to move a
yellow character around, eating a number of dots; students must write this
movement using Java code. Once all the dots have been eaten, the “map”
is considered complete, and students can move on to the next one (Fig-
ure 6; note that the contrast has been adjusted to make the image more
suitable for printing).

Each pair was provided with a laptop installed with the APE tool and ten
randomly chosen APE maps, each pair being asked to solve the same
sequence of maps. Pairs were provided with a list of basic instructions to
move the character (Table 1).

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

138 M. Zarb and J. Hughes

€

Running...

Figure 6. The APE graphical front end.

Table 1. Basic instructions for the APE tool.

Instruction What it does

main.move(); Makes the yellow character move one space forward in whatever
direction is being faced.

main.turnLeft(); Makes the character turn 90 © to the left.

main.turnRight(); Makes the character turn 90 ° to the right.

5.2.3. Procedure

The study was carried out during a four-week period. Pairs were separately
invited to a test room with an installed camera and a voice recorder, to
allow for data capture, and the laptop with the APE tasks to be solved.

Pairs were given a short welcome presentation and a description of the set-
up and tasks to be solved. This introduction made clear that each pair was
responsible for the entire programming process (from discussing possible solu-
tions, to attempting to implement the correct code and testing it) and that pairs
were free to implement solutions using any programming technique at their
disposal (for example, pairs may use for loops and do..while loops to refactor

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 139

the code, or write a parser for a more straightforward manner of telling the
character how to move across the map). All pairs were also told to pair pro-
gram, and switch roles as and when they deemed this to be appropriate. Pairs
in the treatment group were given, in addition, a prepared video® and the paper
copy of the guidelines, and ten minutes to view and read these.

Each pair then was given 45 min to sequentially work their way through
as many tasks as they could. The recording devices were switched on and
the researcher left the room. Following the test period, the researcher
returned, logged the number of programs attempted and distributed post-test
surveys (Table 2) which were completed at that point by the individual
members of the pair. Finally, all participants were asked to comment on their
experience of pair programming. Furthermore, treatment group participants
were asked for their impressions of the guidelines and whether or not they
consciously made use of the guidelines during the test.

The pair’s code was retrieved for later analysis to understand whether the
guidelines had any significant impact on the pair’s success rate.

5.3. Results

The post-test survey data were analysed to determine whether there were
any significant statistical differences reported between the students who were
exposed to the guidelines and those who were not. As the data used were
extracted from Likert scales (and therefore “ordinal”), the Mann—Whitney
U-test was applied (Ryu & Agresti, 2008). Furthermore, as a non-parametric
test, this is more robust against certain assumptions (e.g. outliers seen in the
data) (McElduft, Cortina-Borja, Chan, & Wade, 2010).

5.3.1. Programming experience

A preliminary analysis was performed of the participants’ reported experi-
ence of solo and pair programming to determine whether there were any
differences between the two groups which may have affected the data.

Table 2. The list of questions in the post-test survey.

Question Data gathering
1. T feel pair programming is more beneficial than solo programming. 5-point Likert
scale
2. During this session, I found communicating with my partner to be 5-point Likert
easy. scale
3. Rate your partner’s contribution to today’s session. 5-point Likert
scale
4. How long have you been a (i) solo programmer; (ii) pair Blank space
programmer?
5. What role do you feel you predominantly assumed during today’s Blank space

session?

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

140 M. Zarb and J. Hughes

Table 3. Student programming experience.

Treatment group Control group
Mean SD Mean SD
Solo programming experience (years) 3.7 2.17 2.7 1.86
Pair programming experience (years) 3 .59 2 41

The data show that the groups had somewhat different levels of experi-
ence (Table 3): on average, more individuals in the treatment group had solo
programming experience.

Statistical tests were carried out to establish whether the differences
between the two groups were significant and whether they might cause the
results to be biased:

* No significant differences in solo programming experience were found
between the experimental and control groups: U= 125, z=1.266,
p =227 (p>.05).

* Similarly, no significant differences in pair programming experience
were found between the experimental and control groups: U = 106.5,
z=.427, p=.670 (p > .05).

The results show that there were no significant differences between the
two groups and that further results should not be skewed by any bias result-
ing from one group having additional previous experience.

5.3.2. Perceived benefits of pair programming

In the post-test survey, students were asked to rate the statement “I feel pair
programming is more beneficial than solo programming” on a 5-point Likert
scale.

Figure 7 charts student responses for the two groups.

The treatment group (M = 4.5, SD = .52) and the control group (M =4.1,
SD = .62) report similar scores. There was no significant difference in per-
ceived pair programming benefit between treatment group students
(Mdn = 4.0) and control group students (Mdn =4.5), U=133, z=1.834,
p=.067.

These results show that following the session, the student perception was
that pair programming was more beneficial than solo programming, regard-
less of whether they were exposed to the guidelines or not.

Shapiro—Wilk tests were carried out to understand whether the data being
analysed were normally distributed. Ease of communication scores for
both treatment and control groups were not normally distributed (p < .05).

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 141

"I feel pair programming is more beneficial than solo programming"

s« *
e 4 T
L=
(-]
o
w
@ 4
=3 :
o
b
£
2 27
ol
1-
0 T T
Exposed Mot Exposed

Figure 7. Reported scores for “I feel pair programming is more beneficial than solo
programming”.

Similarly, scores for perceived partner contribution for both groups were
not normally distributed (p <.05). As the data are not normally distributed
for both sets of scores, non-parametric tests were used.

5.3.3. Ease of communication

The post-test survey results relating to ease of communication were anal-
ysed, and descriptive statistics were used to gain an overview of detail
(Table 4).

Figure 8 depicts the distribution of scores reported for ease of commu-
nication between the two groups, ranging from 1 (“strongly disagree”) to 5
(“strongly agree”). The asterisk indicates outliers in the data.

It can be seen that the students who were exposed to the guidelines
reported a higher score than students who were not, with a lower variance.

A Mann—Whitney U-test was run to determine whether there were differ-
ences in ease of communication between the treatment and control groups.
There was a statistically significant difference in ease of communication
scores between students to the guidelines (Mdn =5.0) and those who were
not (Mdn =4.0), U= 169, z=3.721, p = .001.

Table 4. Descriptive statistics for ease of communication (part 2).

Treatment group Control group

Mean SD Mean SD

Ease of communication 49 27 4.0 78

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

142 M. Zarb and J. Hughes

Ease of Communication

5- — *
w
e
S 4+ x =
w
r -
o
-
Ll
_E 3 - *
3
E
E
o
O 54 *
- 2
o
®
L
L)
w
Lol
0 T T
Exposed Mot Exposed

Figure 8. Reported scores for ease of communication.

In this case, p < .05, therefore, the null hypothesis (the distribution of the
pair’s ease of communication is equal across the two groups) was rejected.

5.3.4. Perceived partner contribution

As before, the post-test survey results relating to perceived partner contribu-
tion were analysed, and descriptive statistics were used to gain an overview
of detail (Table 5).

Figure 9 shows the distribution of Likert scale scores for students’ per-
ceived partner contribution between the two groups, ranging from 1 (“no
participation”) to 5 (“excellent”). The asterisk indicates outliers in the data.

It can be seen that generally students who were exposed to the guidelines
rate their partner’s contribution to be quite high, with low variance.

A Mann—Whitney U-test was run to determine whether there were differ-
ences in perceived partner contribution between the treatment and control
groups. A statistically significant difference in perceived partner contribution
scores was evident: treatment group students (Mdn = 5.0); control group stu-
dents (Mdn = 4.0), U = 146, z =2.587, p = .027.

Table 5. Descriptive statistics for perceived partner contribution (part 2).

Treatment group Control group

Mean SD Mean SD

Perceived partner contribution 4.9 .36 3.9 1.07

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 143

Perceived Partner Contribution

‘Perceived Partner Contribution' scores
= w
A A

Exposed Mot Exposed

Figure 9. Reported scores for perceived partner contribution.

In this case, p < .05, therefore, the null hypothesis (the distribution of the
pair’s perceived partner contribution is equal across the two groups) was
rejected.

5.3.5. Successfully completed programs

The number of tasks attempted was noted and scored. Each attempt was
scored by the researcher and also compiled to see correct result was pro-
duced (i.e. if each map was solved successfully). The total number of suc-
cessfully completed tasks was noted for each pair. It should be noted that
none of the participants skipped a task, i.e. all tasks attempted by pairs were
completed successfully (apart from tasks the pair had been working on
where the time ran out).

An independent samples 7-test was run to determine whether there were
differences in completion scores between pairs who were exposed to the pair
programming guidelines (n = 7), and those who were not (n = 7).

There were no outliers in the data, as assessed by inspection of a boxplot
(Figure 10). The tasks completed for each level of exposure were normally
distributed, as assessed by Shapiro—Wilks test (p >.05), and there was
homogeneity of variances, as assessed by Levene’s test for equality of vari-
ances (p = .903).

The treatment group pairs successfully completed slightly more tasks
(4.0 £1.00) than the control group pairs (3.3 +.76). The difference is not
statistically significant: #12) = —1.508, p = .158.

This result shows that exposing pairs to the guidelines did not improve
the number of tasks successfully completed.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

144 M. Zarb and J. Hughes

Number of Attempts Completed

r

E :pq;ud NotE :Iposed

Figure 10. Number of tasks completed.

5.4. Feedback from participants

At the conclusion of the test, all participants were asked to comment on
their experience of pair programming.

Asked whether their expectations of pair programming matched the actual
experience, all students agreed that they could understand “where and why it
[is] useful”, admitting that they felt that the pair programming process was
more natural than it had seemed at the start of the semester. None of the par-
ticipants indicated that communication was an issue during this phase.

All treatment group participants indicated that they found the pair pro-
gramming guidelines to be beneficial, as evidenced by the following quotes:

I found that the restarting pattern came in useful when I was thinking about
other modules as well ... the action pattern, and noticing the driver muttering,
was useful.

The [restarting guideline] would be the most useful one, whereas [planning
and action] would come more naturally. They are definitely good if you don’t
know your partner well.

They seem like really good tips if you get stuck; a lot is self-explanatory,
which is good.

I think we definitely used the restarting pattern. [You] definitely pick up on
when people are getting frustrated, so we went out to the shop; getting away
from the computer was helpful.

When the treatment group students were asked their opinion regarding
introducing the guidelines as a taught component that complemented an

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 145

introduction to pair programming, there was not unanimity. Some argued that
pair programming should be fully understood prior to the introduction of the
guidelines: “it was good to get to grips with pair programming [by
themselves], and learn from [their] mistakes before being taught [the
guidelines]”, and “it might have been too much information at the start”.
Conversely, a number of participants felt that the concepts could be
introduced earlier:

The concept is very straightforward: you are in a pair, and programming.
Being given these guidelines would have shown the more advanced side at
the start, I think.

Treatment group participants agreed that following the initial introduc-
tion, the guidelines were not something they needed to actively think about
or study in order to implement, but that an awareness of the guidelines was
often enough:

We did a lot of it without thinking about it.
We followed them because after a while, they occurred naturally.

These comments are encouraging, indicating that the guidelines were
adopted quite naturally by the participants. Participants found them to be
potentially useful in different situations and scenarios than those initially
envisioned by the researcher. For example, one pair asked about using the
planning guidelines in their own time to learn and understand how to write
Android code from scratch.

6. Discussion
The data gathered from this study supports the following hypotheses:

1. The distribution of the pair’s ease of communication scores differs by
exposure to the guidelines, i.e. pairs who were exposed to the guideli-
nes reported significantly higher scores for ease of communication
than the control group.

2. The distribution of the pair’s perceived partner contribution scores dif-
fers by exposure to the guidelines, i.e. pairs who were exposed to the
guidelines reported significantly higher scores for perceived partner
contribution than the control group.

3. The mean number of completed tasks for pairs who were exposed to the
guidelines and pairs who were not exposed is equal in the population,
i.e. there was no significant difference in the number of completed pro-
grams between pairs who were exposed to the guidelines and the control

group.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

146 M. Zarb and J. Hughes

These results and the accepted hypotheses are preliminary, but they show
that the guidelines may help improve students’ experienced communication
within their pair. It is posited that this stronger “partner contribution” was
due to the fact that individual members of the pair are more confident
communicating their ideas (possibly due to the additional advice provided
by the guidelines); in turn, to their partner, it seems as if they are making
more contributions during the pairing session. Furthermore, the use of the
guidelines may support students in dealing with issues and barriers that typi-
cally arise during pair programming sessions in a structured way. However,
whilst these guidelines can be seen to aid the pairs’ perceived communica-
tion, there is no evidence to suggest that the guidelines have any impact on
student success.

Communication is often reported as one of the main barriers to pair
programming for novice pairs (Begel & Nagappan, 2008; Sanders, 2002;
Williams et al., 2000) by introducing the guidelines seen in this paper, it is
seen that pairs experience better communication, which may lead to more
successful adoption of pair programming.

6.1. Threats to validity

All participants who applied for the study were recruited. Following the
recruitment, when students were randomised into pairs, the pairs were also
alternated into the test or control group. Threats with regard to previous
pairing experience were controlled through the pre-test survey, Section 5.3.1
of this paper reports this in further detail.

All participants had previous contact with the researcher as a laboratory
tutor; to counteract this, the researcher followed set instructions and proce-
dures with all pairs to ensure standardisation across all pairs. Follow-up
studies would benefit from a larger number of potential participants, where
these threats to validity can be kept to a minimum.

6.2. Limitations

These findings are limited by the subject sample being from a single institu-
tion and a relatively small sample group. A sample size of 28 participants
gives a margin of error of 18.51% (CI: 95%). The margin of error could be
reduced by running this study with more participants (e.g. with 50 partici-
pants, the margin of error drops to 13.84%). Increasing the sample size
could give evidence to further support these conclusions and allow these
results to be further generalised beyond the scope of this study.

Furthermore, whilst participants were asked to note down which role
they assumed during the study, there was insufficient data to perform a thor-
ough analysis of how the roles were assumed.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 147

7. Conclusions

This paper has investigated the issue of communication for inexperienced pair
programmers. It has reported on a series of observations of industry expert
pair programmers. This work identified communication states frequently
experienced by the industry pairs, leading to an understanding of how expert
pairs transitioned between various communication states. This knowledge was
used to establish communication guidelines for novice pair programmers.
Novice pairs reacted positively to the guidelines, indicating that the guidelines
were beneficial and useful. Further evaluations indicate that exposure to the
guidelines resulted in a positive impact on the students’ intra-pair communica-
tion, and on their perception of their partner’s contribution.

7.1. Future work

There are several aspects of this research that could be investigated further.
Whilst this study reported on participants solving simple coding exercises, it
would be valuable to run this study to test the guidelines against a wider
range of programming abilities (for example, code analysis, debugging and
testing). A follow-up study would be more focussed on studying
participants’ role preference and behaviour, whilst targeting a wider range of
participants from multiple institutions.

7.2. Conclusions

At the time of writing, several educators have expressed an interest in adopt-
ing the guidelines for the teaching of pair programming within their insti-
tutes.

To conclude, this work presents initial evidence showing that it may be
possible to improve communication levels between novice students who are
pairing together by presenting them with industry-inspired guidelines.
Novice pairs who had been exposed to the guidelines reported significant
improvements in their perceived communication and partner contribution
than students who had not.

The guidelines developed in this paper can be used to aid pairs that are
sceptical or anxious about communicating with a new partner. Novice pairs
can use these guidelines to explore different ways of dealing with issues that
typically arise during pair programming.

This is captured in the following statement, made by a student participant
during the evaluation stages:

There’s a definite benefit in introducing this. In pair programming, we’re told
to “work in pairs: go!”, and there weren’t formal steps, apart from the funda-
mentals. There wasn’t a lot of what to do if you became stuck.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

148 M. Zarb and J. Hughes

Acknowledgements

The authors wish to thank Professor John Richards for insightful discussions and support
with this work. Thanks to the pairwith.us team, the pairs at C1 and C2, and to all the stu-
dents at the University of Dundee’s School of Computing who agreed to participate in the
various studies.

Disclosure statement
No potential conflict of interest was reported by the authors.

Notes

1. Code.org video on pair programming: https://www.youtube.com/watch?v=vgka
hOzFH2Q

2. The APE tool was created by Heron and Belford (see http://monkeys.imaginary-reali
ties.com) and used with permission.

3. A copy of this video is available at the following URL: https://www.youtube.com/
watch?v=ONnYCT _LlJio

References

Aiken, J. (2004). Technical and human perspectives on pair programming. ACM SIGSOFT
Software Engineering Notes, 29(5), 1-14. doi:10.1145/1022494.1022512

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA:
Addison-Wesley Professional.

Begel, A., & Nagappan, N. (2008). Pair programming: What’s in it for me? In Proceedings
of the 2nd ACM-IEEE international symposium on Empirical sofiware engineering and
measurement, Madrid, Spain.

Bevan, J., Werner, L., & McDowell, C. (2002). Guidelines for the use of pair programming
in a freshman programming class. In Proceedings of the 15th conference on sofiware
engineering education and training. Kentucky: IEEE.

Braught, G., Eby, L. M., & Wahls, T. (2008). The effects of pair-programming on individual
programming skill. In Proceedings of the 3rd technical symposium on computer science
education. Portland, OR: ACM.

Bryant, S. (2004). Double trouble: Mixing qualitative and quantitative methods in the study
of extreme programmers. In IEEE symposium on visual languages and human centric
computing. Rome: IEEE.

Bryant, S., Romero, P., & du Boulay, B. (2006). The collaborative nature of pair programming.
In D. Hutchison, T. Kanade, & J. Kittler (Eds.), Extreme programming and agile processes
in sofiware engineering, (Vol. 4044, pp. 53—64). Oulu: Springer Berlin/Heidelberg.

Chaparro, E. A., Yuksel, A., Romero, P., & Bryant, S. (2005). Factors affecting the per-
ceived effectiveness of pair programming in higher education. In Proceedings of the
17th workshop of the psychology of programming interest group. Brighton: University of
Sussex.

Chi, M. T. (1997). Quantifying qualitative analyses of verbal data: A practical guide. Journal
of the Learning Sciences, 6, 271-315.

Choi, K. S., Deek, F. P.,, & Im, 1. (2009). Pair dynamics in team collaboration. Computers in
Human Behavior, 25, 844-852. do0i:10.1016/j.chb.2008.09.005

Chong, J., & Hurlbutt, T. (2007). The social dynamics of pair programming. In Proceedings
of the 29th international conference on software engineering, Minneapolis, MN.

Cliburn, D. C. (2003). Experiences with pair programming at a small college. Journal of
Computing Sciences in Colleges, 19, 20-29.

Cockburn, A., & Williams, L. (2001). The costs and benefits of pair programming. In
G. Suxxi & M. Marchesi (Eds.), Extreme programming examined (pp. 223-243).
Reading, MA: Addison-Wesley.

https://www.youtube.com/watch?v=vgkahOzFH2Q
https://www.youtube.com/watch?v=vgkahOzFH2Q
http://monkeys.imaginary-realities.com
http://monkeys.imaginary-realities.com
https://www.youtube.com/watch?v=ONnYCT_LJio
https://www.youtube.com/watch?v=ONnYCT_LJio
http://dx.doi.org/10.1145/1022494.1022512
http://dx.doi.org/10.1016/j.chb.2008.09.005

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 149

Constantine, L. L. (1995). Constantine on peopleware. Englewood Cliffs, NJ: Yourdon
Press.

DeClue, T. H. (2003). Pair programming and pair trading: Effects on learning and motivation
in a CS2 course. Journal of Computing Sciences in Colleges, 18, 49-56.

Flor, N. V., & Hutchins, E. L. (1991). A Case Study of Team Programming During Perfec-
tive Software Maintenance. In Proceedings of the fourth annual workshop on empirical
studies of programmers. Norwood, NJ: Ablex Publishing.

Freudenberg, S., Romero, P., & Du Boulay, B. (2007). “Talking the talk”: Is intermediate-
level conversation the key to the pair programming success story? Paper presented at the
Agile Conference (AGILE), 2007. Washington, DC: IEEE.

Gallis, H., Arisholm, E., & Dyba, T. (2003). An initial framework for research on pair pro-
gramming. In International symposium on empirical software engineering, Rome, Italy.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for
qualitative research. New York, NY: Aldine de Gruyter.

Hanks, B. (2006). Student attitudes toward pair programming. In Proceedings of the 11th
annual conference on innovation and technology in computer science education.
Bologna: ACM.

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair program-
ming in education: A literature review. Computer Science Education, 21, 135-173.

Hannay, J. E., Dyb4, T., Arisholm, E., & Sjeberg, D. 1. (2009). The effectiveness of pair
programming: A meta-analysis. Information and Software Technology, 51, 1110-1122.

Hulkko, H., & Abrahamsson, P. (2005). A multiple case study on the impact of pair pro-
gramming on product quality. In Proceedings of the 27th international conference on
software engineering. St. Louis, MO: ACM.

Johnson, D. H., & Caristi, J. (2001). Extreme programming the software design course. In
M. Marchesi, G. Succi, D. Wells, & L. Williams (Eds.), Extreme programming perspec-
tives. Reading, MA: Addison Wesley.

Katira, N., Williams, L., & Osborne, J. (2005). Towards increasing the compatibility of stu-
dent pair programers. In Proceedings of the 27th international conference on sofiware
engineering, St. Louis, MO.

Kavitha, R., & Ahmed, M. 1. (2015). Knowledge sharing through pair programming in learn-
ing environments: An empirical study. Education and Information Technologies, 20,
319-333. doi:10.1007/s10639-013-9285-5

Lindvall, M., Basili, V. R., Boehm, B. W., Costa, P., Dangle, K., Shull, F., ... Zelkowitz, M.
V. (2002). Empirical findings in agile methods. In Proceedings of the second XP uni-
verse and first agile universe conference on extreme programming and agile methods.
London: Springer-Verlag.

McDowell, C., Hanks, B., & Werner, L. (2003). Experimenting with pair programming in
the classroom. ACM SIGCSE Bulletin, 35, 60—64. doi:10.1145/961290.961531

McElduff, F., Cortina-Borja, M., Chan, S.-K., & Wade, A. (2010). When t-tests or
Wilcoxon—-Mann—Whitney tests won’t do. AJP: Advances in Physiology Education, 34,
128-133.

Melnik, G., & Maurer, F. (2002). Perceptions of agile practices: A student survey. In
Proceedings of the second XP universe and first agile universe conference on extreme
programming and agile methods. London: Springer-Verlag.

Mendes, E., Al-Fakhri, L. B., & Luxton-Reilly, A. (2005). Investigating pair-programming
in a 2nd-year software development and design computer science course. In Proceedings
of the 10th annual conference on innovation and technology in computer science educa-
tion. Monte de Caparica: ACM.

Montgomery, P., & Bailey, P. H. (2007). Field notes and theoretical memos in grounded the-
ory. Western Journal of Nursing Research, 29, 65-79. doi:10.1177/0193945906292557
Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010). Pair debugging: A transac-
tive discourse analysis. In Proceedings of the sixth international workshop on computing

education research. Aarhus: ACM.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., & Balik, S. (2003).
Improving the CS1 experience with pair programming. In Proceedings of the 24th
technical symposium on computer science education. New York, NY: ACM.

http://dx.doi.org/10.1007/s10639-013-9285-5
http://dx.doi.org/10.1145/961290.961531
http://dx.doi.org/10.1177/0193945906292557

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

150 M. Zarb and J. Hughes

Nawrocki, J., & Wojciechowski, A. (2001). Experimental evaluation of pair programming.
In Proceedings of European sofiware control and metrics, London, UK.

Plonka, L., Sharp, H., & van der Linden, J. (2012). Disengagement in pair programming:
Does it matter? In Proceedings of the 34th international conference on sofiware
engineering. Piscataway, NJ: IEEE.

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in introductory
programming Communications of the ACM, 56, 34-36. doi:10.1145/2492007.2492020
Ryu, E. & Agresti, A. (2008). Modeling and inference for an ordinal effect size measure.

Statistics in Medicine, 27, 1703—1717. doi:10.1002/sim.3079

Sanders, D. (2002). Student perceptions of the suitability of extreme and pair programming.
In M. Marchesi, G. Succi, D. Wells, & L. Williams (Eds.), Extreme programming
perspectives (pp. 168—174). Reading, MA: Addison-Wesley Professional.

Sfetsos, P., Stamelos, 1., Angelis, L., & Deligiannis, I. (2006). Investigating the impact of
personality types on communication and collaboration-viability in pair programming —
An empirical study. In D. Hutchinson, T. Kanade, & J. Kittler (Eds.), Extreme program-
ming and agile processes in software engineering (Vol. 4044, pp. 43-52). Oulu: Springer
Berlin/Heidelberg.

Sharp, H., & Robinson, H. (2010). Three ‘C’s of agile practice: Collaboration, co-ordination
and communication. In T. Dingseyr, T. Dybd, & N. B. Moe (Eds.), Agile Sofiware
Development (pp. 61-85). Berlin: Springer.

Srikanth, H., Williams, L., Wiebe, E., Miller, C., & Balik, S. (2004). On pair rotation in the
computer science course. In Proceedings of the 17th conference on software engineering
education and training, Norfolk, VA.

Stapel, K., Knauss, E., Schneider, K., & Becker, M. (2010). Towards understanding commu-
nication structure in pair programming. In A. Sillitti, A. Martin, X. Wang, & E.
Whitworth (Eds.), Agile processes in software engineering and extreme programming
(Vol. 48, pp. 117-131). Trondheim: Springer.

Thomas, L., Ratcliffe, M., & Robertson, A. (2003). Code warriors and code-a-phobes. ACM
SIGCSE Bulletin, 35, 363-367. doi:10.1145/792548.612007

VanDeGrift, T. (2004). Coupling pair programming and writing: Learning about students’
perceptions and processes. In Proceedings of the 35th SIGCSE technical symposium on
computer science education, Norfolk, VA.

Vanhanen, J., & Lassenius, C. (2005). Effects of pair programming at the development team
level: An experiment. In Proceedings of the international symposium on empirical
software engineering. Noosa Heads: IEEE.

Watzlawick, P., Bavelas, J. B., & Jackson, D. D. (1967). Pragmatics of human communica-
tion: A study of interactional patterns, pathologies, and paradoxes. New York, NY:
WW Norton & Company.

Werner, L. L., Hanks, B., & McDowell, C. (2004). Pair-programming helps female computer
science students. Journal on Educational Resources in Computing, 4(1), Article 3.

Williams, L. (2008). Introduction to Pair Programming (Version 2) [Lecture notes]. Retrieved
from https://www.youtube.com/watch?v=rG_U12uqRhE

Williams, L., & Kessler, R. (2000). All I really need to know about pair programming I
learned in kindergarten. Communications of the ACM, 43, 108-114. doi:10.1145/
332833.332848

Williams, L., & Kessler, R. (2001). Experiments with Industry’s? Pair-programming? Model
in the computer science classroom. Computer Science Education, 11, 7-20. doi:10.1076/
csed.11.1.7.3846

Williams, L., & Kessler, R. (2002). Pair programming illuminated. Boston, MA: Addison-
Wesley Longman Publishing.

Williams, L., Kessler, R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case for
pair programming. [EEE Software, 17, 19-25. doi:10.1109/52.854064

Williams, L., McCrickard, D. S., Layman, L., & Hussein, K. (2008). Eleven guidelines for
implementing pair programming in the classroom. In Proceedings of the 2008 AGILE
conference. Toronto: IEEE.

http://dx.doi.org/10.1145/2492007.2492020
http://dx.doi.org/10.1002/sim.3079
http://dx.doi.org/10.1145/792548.612007
https://www.youtube.com/watch?v=rG_U12uqRhE
http://dx.doi.org/10.1145/332833.332848
http://dx.doi.org/10.1145/332833.332848
http://dx.doi.org/10.1076/csed.11.1.7.3846
http://dx.doi.org/10.1076/csed.11.1.7.3846
http://dx.doi.org/10.1109/52.854064

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:38 03 March 2016

Computer Science Education 151

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of pair
programming in the introductory computer science course. Computer Science Education,
12, 197-212. doi:10.1076/csed.12.3.197.8618

Wilson, J. D., Hoskin, N., & Nosek, J. T. (1993). The benefits of collaboration for student
programmers. ACM SIGCSE Bulletin, 25, 160—-164. doi:10.1145/169073.169383

Zarb, M., Hughes, J., & Richards, J. (2012). Analysing communication trends in pair
programming using grounded theory. In Proceedings of the 26th BCS conference on
human-computer interaction, Birmingham, UK.

Zarb, M., Hughes, J., & Richards, J. (2013). Industry-inspired guidelines improve students’
pair programming communication. In Proceedings of the 18th ACM conference on
innovation and technology in computer science education, Canterbury, England, UK.

http://dx.doi.org/10.1076/csed.12.3.197.8618
http://dx.doi.org/10.1145/169073.169383

	Abstract
	1. Introduction
	2. Background research
	2.1. Pair programming: an introduction
	2.2. Communication within pair programming
	2.3. Existing pair programming guidelines

	3. Observing pair communication
	3.1. Extracting patterns and generating guidelines

	4. The guidelines
	4.1. The restarting pattern and guidelines
	4.2. The planning pattern and guidelines
	4.3. The action pattern and guidelines
	4.4. The communication guidelines

	5. Evaluation of the guidelines
	5.1. Study design
	5.2. Method
	5.2.1. Participants
	5.2.2. Materials
	5.2.3. Procedure

	5.3. Results
	5.3.1. Programming experience
	5.3.2. Perceived benefits of pair programming
	5.3.3. Ease of communication
	5.3.4. Perceived partner contribution
	5.3.5. Successfully completed programs

	5.4. Feedback from participants

	6. Discussion
	6.1. Threats to validity
	6.2. Limitations

	7. Conclusions
	7.1. Future work
	7.2. Conclusions

	Acknowledgements
	 Disclosure statement
	Notes
	References

