€Y Routledge

g Taylor &Francis Group

Computer Science Education

ISSN: 0899-3408 (Print) 1744-5175 (Online) Journal homepage: http://www.tandfonline.com/loi/ncse20

Is pair programming more effective than other
forms of collaboration for young students?

Colleen M. Lewis

To cite this article: Colleen M. Lewis (2011) Is pair programming more effective than other
forms of collaboration for young students?, Computer Science Education, 21:2, 105-134, DOI:
10.1080/08993408.2011.579805

To link to this article: http://dx.doi.org/10.1080/08993408.2011.579805

@ Published online: 17 Jun 2011.

N
CJ/ Submit your article to this journal &

||I| Article views: 555

A
& View related articles &'

@ Citing articles: 5 View citing articles &

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=ncse20

(Download by: [b-on: Biblioteca do conhecimento online UL] Date: 03 March 2016, At: 08:09)

http://www.tandfonline.com/action/journalInformation?journalCode=ncse20
http://www.tandfonline.com/loi/ncse20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2011.579805
http://dx.doi.org/10.1080/08993408.2011.579805
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/08993408.2011.579805
http://www.tandfonline.com/doi/mlt/10.1080/08993408.2011.579805
http://www.tandfonline.com/doi/citedby/10.1080/08993408.2011.579805#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/08993408.2011.579805#tabModule

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education % Routledge
Vol. 21, No. 2, June 2011, 105-134 AW Toylorésfrancs Group

Is pair programming more effective than other forms of collaboration
for young students?

Colleen M. Lewis*

Graduate School of Education, University of California — Berkeley, Berkeley, USA
(Received 1 November 2010, final version received 1 April 2011)

This study investigates differences between collaboration methods in
two summer enrichment classes for students entering the sixth grade.
In one treatment, students used pair programming. In the other
treatment, students engaged in frequent collaboration, but worked
on their own computer. Students in the two treatments did not differ
significantly in their performance on daily quizzes or responses to
attitudinal survey questions. However, the students who worked on
their own computer completed exercises more quickly than those
using pair programming. This study compares two learning environ-
ments with high levels of collaboration to isolate aspects of pair
programming that are and are not responsible for the reported success
of educational research focused on pair programming. This study
expands our understanding of pair programming by moving beyond
simplistic comparisons of learning environments with and without
collaboration and by extending pair programming research to
elementary school students.

Keywords: pair programming; collaboration; Scratch

1. Introduction

There is recent enthusiasm within computer science education about
adopting and researching the software engineering practice of pair
programming. Pair programming is the practice where two programmers
work together to solve problems using a single computer. Typically, these
programmers will alternate which individual is using the keyboard and
mouse, a role referred to as the “driver”, and which individual is
providing support to identify errors or opportunities for improvement, a
role referred to as the “‘navigator™.

Prior research has shown that students using pair programming
have increased competence with computer science concepts (Braught,
Wahls, & Marlin Eby, 2011), have higher grades (Mendes, Al-Fakhri,

*Email: colleenl@berkeley.edu

ISSN 0899-3408 print/ISSN 1744-5175 online
© 2011 Taylor & Francis

DOI: 10.1080/08993408.2011.579805
http://www.informaworld.com

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

106 C.M. Lewis

& Luxton-Reilly, 2006), are more likely to complete the course
(Carver, Jenderson, He, Hodges, & Reese, 2007), have increased
enjoyment of programming (McDowell, Werner, Bullock, & Fernald,
2003), and have more positive views of their individual performance
(Braught et al., 2011).

These benefits are often attributed to the opportunity for increased
collaboration (e.g. Preston, 2006). While collaboration has long been
shown to be beneficial for students’ learning (e.g. Johnson, Johnson, &
Smith, 1991), pair programming requires a trade-off of hands-on
experience for increased collaboration. This study compares two learning
environments with high levels of collaboration to isolate aspects of pair
programming that are and are not responsible for the reported success of
pair programming in education research.

We examined the differences between pair programming and
collaboration without pair programming during a summer enrichment
program for students entering the sixth grade. In the first treatment, “pair
programming’’, students worked with a partner each day using a single
computer. The students in the pair programming condition switched
which student was using the keyboard and mouse every 5 minutes. In the
second treatment, “‘intermittent collaboration”, students were assigned a
partner; however, they completed all tasks on their own computers. These
students were required to discuss any problems with their partner before
asking an instructor for help and were required to stop programming
once every 5 minutes to discuss any recent progress or challenges with
their partner.

The two treatments in the current study were designed so that each has
hypothesized benefits over the other. It is possible that the pair
programming treatment is superior because it provides an increased
requirement of collaboration. It is also possible that the intermittent
collaboration treatment is superior because it provides students with
more individual experience in programming. This is the first known
research that examines the trade-offs between two collaborative educa-
tional contexts in computer science. To build upon the body of research
showing the benefits of collaboration in other domains (Linn & Hsi, 2000;
Vygotsky, 1978), research needs to extend beyond comparing pair
programming with conditions with no collaboration.

The article presents data collected from daily quizzes, pacing
information collected from the online curriculum, survey responses
related to students’ attitudes about programming, and observations by
the course instructors. Students in the two treatments did not differ
significantly in their performance on daily assessments or responses to
attitudinal survey questions. However, students in the intermittent
collaboration treatment completed exercises more quickly than the
students in the pair programming treatment. These findings suggest the

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 107

existence of alternative methods of collaboration that can support novice
computer science students. Developing understanding of the costs and
benefits of various collaboration techniques holds promise for improving
the quality of computer science education and is an important direction
for research.

2. Previous research
2.1. The strengths and weaknesses of each treatment

The current study compares two well-motivated educational environ-
ments to develop our understanding of the boundaries and affordance of
the pedagogical technique of pair programming. Both treatments include
ample opportunities for collaboration that can help students breach
challenges (Schoenfeld, 1985), gain experience discussing technical
concepts and plans (Chi, de Leecuw, Chiu, & La Vancher, 1994), and
utilize support to execute tasks within their zone of proximal development
(Vygotsky, 1978). While both treatments in the current study involve and
require collaboration, the pair programming condition has greater
opportunities for collaboration, and the individual condition has greater
opportunities for individual exploration and experience. In the following
section, we summarize previous research that characterizes the strengths
and weaknesses of the pair programming treatment and the intermittent
collaboration treatment.

2.1.1. Pair programming — strengths

While both treatments involve collaboration, pair programming has an
increased requirement for collaboration, which may afford additional
opportunities for students to:

e support and be supported by a learning partner, which can enable
competence on tasks that would not be possible individually
(Vygotsky, 1978);

e avoid a wild-goose chase during the problem solving process
(Schoenfeld, 1985);

e engage in self- and peer explanations, which is helpful for conceptual
development (Chi et al., 1994);

e learn from peer explanations that may be better matched to
students’ existing understanding (Linn & Hsi, 2000);

e view computer science as a collaborative, rather than isolating,
process, which is a common misconception regarding computer
science (Margolis & Fisher, 2003);

e describe a programming process in human-understandable terms, a
core competency in learning to program (Soloway, 1986), and

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

108 C.M. Lewis

e plan changes to code with a partner rather than making random or
trivial changes to code when facing a challenge, a pattern frequently
observed by educators and in previous research (Jadud, 2006).

2.1.2. Individual work — strengths

While the intermittent collaboration treatment in this study required
some collaboration, the requirements were less significant than in the pair
programming treatment. The realization of the above benefits of pair
programming may be mediated by the decreased time engaged in
collaboration. However, with decreased collaboration came increased
opportunities for students to:

e cxercise greater control over their individual learning, which
neurology research has shown is advantageous for learning because
it involves recruitment of distinct neural systems (Voss, Gonsalves,
Federmeier, Tranel, & Cohen, 2010);

e increase their intrinsic motivation by taking ownership and pride in
an accomplishment (Deci, 1971);

e pursue their individual interests within a project, which may increase
enjoyment and reinforce learning (diSessa, 2000), and

e progress at a differentiated pace determined by their individual
understanding and competence (Tomlinson & Allan, 2000).

In addition to these advantages of individual learning, collaboration
can have drawbacks, for example:

e it is difficult to construct a learning environment where pairs engage
in productive discourse to make progress in their conceptual
understanding (Linn & Hsi, 2000);

e students, particularly children, may lack the skills to engage in
meaningful collaborative discourse (Johnson et al., 1991), and

e opportunities for collaboration may inadvertently lead to off-task
behavior or conflict (Lemov, 2010).

2.3. Researching a young population

Research has found that students in middle school are at a critical point
in shaping their interest in Science, Technology, Engineering, and
Mathematics (STEM) fields (Jacobs, 2005). There are three known
studies that investigate pair programming at the middle-school level
(Denner & Werner, 2007; Werner, Campe, & Denner, 2005; Werner &
Denning, 2009). These studies examined the behaviors of pair program-
ming with middle school students and considered learning gains

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 109

(Werner et al., 2005) and patterns of interaction and problem solving
(Denner & Werner, 2007; Werner & Denning, 2009). They found that
students developed competence with some information technology
content and found significant evidence of persistence patterns amongst
the pairs when facing challenges. These studies extend pair programming
research to this population, which is an important target for intervention
(Jacobs, 2005) and may present unique constraints when applying
research of adults using pair programming.

With a similar population, Inkpen, Booth, Gribble, and Klawe (1995)
compared the role switching behaviors of pairs of boys and girls in middle
school. These participants were observed sharing a computer with two
computer mice to play a puzzle-solving computer game and were placed
in one of two sharing conditions. In one condition, the students who were
not currently in control could click their mouse button and take control
from their partners. In the other condition, the player in control had to
click a mouse button to give control to his or her partner. They measured
the number of puzzles completed by each pair. They found that pairs of
boys were most successful in the game in the condition where they could
take control and that pairs of girls were most successful in the condition
where they could give control. This study highlights the complexity
of collaborative relationships. In contrast to this research, the current
study attempts to remove patterns of role switching from consideration
by imposing potentially unnatural, but consistent, rules for role
switching.

These studies are the only other known studies investigating pair
programming or computer sharing with this age population. This is in
stark contrast to the prevalence of outreach efforts targeting students
at this age. Additional research should mirror research at the college level
to investigate the application of pedagogical techniques with this
population.

3. Research questions

The following two research questions are parallel in structure with an
emphasis on students’ learning, attitudes, and pace.

e Do the increased levels of collaboration in the pair programming
treatment produce greater learning outcomes, greater interest and
confidence in computer science, and an accelerated pace of task
completion?

e Do the increased opportunities for individual task execution in the
intermittent collaboration treatment produce greater learning out-
comes, greater interest and confidence in computer science, and an
accelerated pace of task completion?

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

110 C.M. Lewis

4. Methods

After introducing the curriculum and treatment groups, we present data
sources and analysis methods regarding the three main analytic themes:
students’ understanding of programming constructs derived from daily
quizzes, pacing information derived from students’ online curriculum
logs, and students’ attitudes toward computing derived from surveys.
Statistical significance testing is determined using a Mann—Whitney—
Wilcoxon test, which is similar to a ¢-test without the assumption that the
data are normally distributed. A standard threshold of 5% is used for
statistical significance.

4.1. Summer enrichment program

The study took place in two offerings of a computer programming course
at a summer enrichment program. The summer enrichment program was
designed for academically advanced students, and the current course was
restricted to students entering the sixth grade. The courses met 4 days a
week over a 3-week period. Each of the 12 class days had 3 hours of class
time. The study took place in the morning and afternoon sessions in the
summer of 2010. The author co-taught the course with a colleague, and
the two instructors had the support of a volunteer teaching assistant most
days.

4.2. The curriculum

The curriculum used by both treatments was identical and had been
developed over multiple iterations and used by both middle school
students and college students (www.colleenmlewis.com/Scratch). During
the evolution of the curriculum, it was adapted to an online delivery
system, Moodle. This online delivery system presented students with
reading, programming tasks, and online quizzes with immediate feed-
backs akin to the activities used in lab-centric instruction (Titterton,
Lewis, & Clancy, 2010).

The majority of the class time was dedicated to students using the
online curriculum. During the 3-hour class, students spent on average
1 hour and 49 minutes using the online curriculum. Other offline activities
included the following:

quizzes;

surveys;

lectures;

activities from CS Unplugged (http://csunplugged.org/);

other non-programming activities to reinforce or introduce pro-
gramming topics.

http://www.colleenmlewis.com/Scratch
http://csunplugged.org/

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 111

The course used three programming languages: Scratch, Logo, and a
variation of the Scratch programming language referred to as Snap,
formerly Build Your Own Blocks or BYOB (Harvey & Monig, 2010).
Scratch was the primary language in the course; approximately 3 hours of
class time was dedicated to learning Snap, and approximately 30 minutes
to experimenting with Logo.

Table 1 shows the outline of the curriculum, describing brief details of
the skills covered and the specific programming tasks. The curriculum
was designed to cover new content each day and provide an opportunity
for open-ended practice at the end of the day. Depending upon students’
pace throughout the activities, the open-ended practice activity would
vary in duration. This allowed students in the class to progress through
the curriculum together, despite differences in pace during a single class
session.

Sample quiz questions appear in the Appendix, and sample program-
ming tasks are described below to provide concrete examples of the
tasks undertaken for purposes of methodological rigor (Nawrocki &
Wojciechowski, 2001) and to highlight themes emphasized in the
curriculum for use by educators.

4.2.1. Emphasis on iteration

A programming concept that appeared throughout the curriculum was
that of iteration. Beginning on the second day of class, students began
writing procedures that iterated through a series of values. Table 2
provides a description of multiple iteration tasks and solutions written in
Scratch. Iteration was emphasized throughout the curriculum for two

Table 1. Overview of topics covered on each day of the 12-day course.

Day Topics

1 Introduction to Scratch, sounds, songs, and repeat

2 Variables, iterator pattern, and event-based programming

3 Drawing regular polygons and drawing shapes with iterators

4 Using variables to draw shapes — Part 1

5 Using variables to draw shapes — Part 2

6 Coordinates moving the character with the keys and implementing a game
of tag

7 Random, broadcast, making plays, and implementing a rock paper
scissors game

8 Animation, lists, and implementing a number guessing games

9 Scratch platform game techniques: flying and jumping and Snap: composition
of functions and functions returning numbers or Boolean values

10 Drawing a brick wall and iterator pattern with sentences

11 Final projects — Part 1

12 Final projects — Part 2 and Open House

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

112 C.M. Lewis

Table 2. Example programs from specific days within the curriculum.

Day 2: Play the notes from 60 to 69.

when clicked

set my note to m

repeat)
play note my note for m beats
»

change my note |by 0
.

Day 3: Draw a squiral (square + spiral).

when clicked

set my Ier.g(h to m _—
repeat m

move my length steps
»

turn (& €D degrees
»
change my length by m

- \Q

Day 5: Say every item in a list.

when clicked
set my index to E
repeat length of my list
say item my index of my lis for B secs

>

(hange my mde x by o

~

Day 8: Draw a line that increases in thickness.

when

pen down

set pen size to n

' staps ®
’nlovt‘ m steps : ’

change pen size by a v
-

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 113

reasons. The first is the applicability to professional programming
languages. The second is the opportunity for students to practice the
pattern across multiple problem contexts, which, based upon previous
research, was assumed to be beneficial for learning (diSessa & Wagner,
20095).

4.2.2. Emphasis on iterative development

Below we show a series of exercises that students were given on the fifth
day of instruction to show the pattern of iterative development, which
was emphasized throughout the course. Before beginning the first task,
students were shown the goal, an image of a multi-colored flower, shown
on the right in Table 3. Each exercise introduced a new level of
complexity in accomplishing the final goal. For example, students started
out drawing a single petal, and then drew a series of petals, until they
finally changed the color of each petal to accomplish the final goal.

This scaffolding of students’ work through iterative development was
designed to help students be more successful in writing complex programs
and to model the process of breaking goals into multiple intermediate
tasks.

4.3. Assignment to treatment groups

Before enrolling in the class, parents and students were informed that the
instructor would be researching the course. However, they were not aware
that there would be differences between the morning and afternoon
offerings. Students were, therefore, not able to self-select into a treatment
group. This research design is called quasi-experimental (Campbell,
Stanley, & Gage, 1966), indicating that assignment to treatment groups is
not random, but using existing classroom populations.

Table 3. Iterative development steps in creating the rainbow-colored flower.

Step 1 Step 2 Step 3

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

114 C.M. Lewis

The final number of class participants was not confirmed until the
first day. On the first day of class, the morning section was selected as
the pair programming treatment because there was an even number
of students. If there had been an odd number of students in the
morning class, we planned to have the afternoon class assigned to the
pair programming treatment so as to decrease the likelihood that we
would have an odd number of students in the pair programming
treatment.

Before the class began, two students in each treatment chose not to
participate in the research project, leaving 18 students in the pair
programming treatment and 22 students in the intermittent collaboration
treatment. There were 13 female students in the sample, but differences in
gender are not the analytical focus.

4.4. Pair programming treatment

Students in the pair programming treatment worked together on one
computer for all programming activities. Students were assigned seats
daily. At the beginning of each class day, students sitting at each
computer were assigned to be either ‘“‘Partner A” or “Partner B.”
Whenever students were programming, a Scratch program was projected
that displayed a large “A” or ‘B’ depending upon which partner should
be acting as the current driver and using the keyboard and mouse. The
Scratch project played music every 5 minutes to indicate that pairs should
switch roles. On the first day of class, for six iterations, the Scratch project
played music every minute to practice switching driver and navigator.
The Scratch project was stopped when announcements were made by the
instructors or during the class break so that each partner was ensured
5 minutes as the driver before switching. Five minutes was chosen by the
author for the previous offering of the course (Lewis, 2010) as an estimate
of what might be reasonable for this population. Based upon the visible
impatience of students waiting for their turn as driver in the previous
study, we chose to maintain the use of 5-minute intervals. To supplement
this experience, it may be more appropriate to base this time on empirical
evidence regarding the attention span of the population. In the work of
Werner et al. (2005) with middle school girls, 15 minutes was the average
duration between switching roles, and they did not report any adverse
effects.

Pairs were reassigned each day, and pairing was random except in
cases specifically intended to improve consistency of pacing. If a pair of
students had difficulty in completing the activities, the next day, the
instructors attempted to pair each of those students with a student who
had progressed at an accelerated pace. Poor communication, conflict,

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 115

or off-task behavior often delayed a team’s pace, and we estimate that
instances of a delayed pace were frequently not the result of a lack of
students’ understanding.

In the previous iteration of the class, all students used pair
programming and were verbally reminded to switch roles every
5 minutes when a timer rang (Lewis, 2010). In that offering, we had
difficulty with students losing track of who was the driver and the
navigator, using the keyboard and mouse when it was not their turn, and
frequently arguing about turn taking. A substantial amount of instructor
time was dedicated during that summer to mediating arguments,
monitoring role switching, and pairing students to avoid conflict. The
instructors observed that these conflicts were not present in the current
offering and attributed it to the visual record of who should be using the
keyboard and mouse. Even if a student used the keyboard or mouse out
of turn, they could easily return to the assigned role by consulting the
projected letter.

In the current offering, there remained challenges in the execution of
pair programming. Occasionally, we had to remind students to pay
attention while their partner was using the keyboard and mouse. A
student using the keyboard and mouse would sometimes ask an
instructor for help before consulting his or her partner. While this
behavior differs from the idea of pair programming, based upon our
experience using pair programming with college students, we believe that
this lack of attention, when not using the keyboard and mouse, is
common.

4.5. Individual treatment

Students in the intermittent collaboration treatment worked individually
on a computer. At the beginning of each class session, students were
assigned a partner. Before a student asked an instructor a question, they
were required to have discussed the question with their partner. This was
used to encourage students to engage with their partner around
debugging tasks.

Similar to the pair programming condition, whenever students were
programming, a Scratch project was projected on the screen. This project
had the sole purpose of playing music every 5 minutes. When the music
played, students were required to stop what they were doing and talk to
their partner. On the first day of class, students practiced this, stopping
every minute for the first 6 minutes. During this practice, students gave
each other a high-five and were encouraged to use the starting line “Hey
partner, you stuck on anything?”’ or ““Hey partner, what are you working
on?” Most students continued to use one of these lines to initiate

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

116 C.M. Lewis

conversation throughout the course. Students were expected to discuss
their work with their partner the entire time that the music played, which
lasted approximately 28 s. When the music began to play, students
covered their monitors with the fabric curtains; however, they could lift
the curtain on a computer to discuss a particular program.

Few partners made particularly productive use of this time, and some
engaged in off-topic discussion. However, between these exchanges,
students would frequently discuss and resolve their problems without the
help of an instructor, and we hypothesize that the interruptions and
opportunities for discussion reinforced the pair relationship. We observed
that it was infrequent that a student would consult another student who
was not his or her partner, even if he or she was the same distance away as
the student’s partner.

Partners were assigned each day randomly, except when intended to
separate students who engaged in off-task behavior during class. Unlike
the pair programming treatment, students’ pace was not taken into
account when assigning partners.

4.6. Students’ understanding

Students took daily quizzes from the second through tenth day of
instruction. Quizzes typically lasted 15 minutes, and the amount of time
provided on the quizzes was recorded and was standard between the two
treatments. If students completed the quiz before the time limit, they
would work on worksheets from CS Unplugged, and most students
completed quizzes within the time limit. Quizzes were administered at the
beginning of class and emphasized content from the previous day. The
quizzes had an average of 15.7 questions (min = 11; max = 21), and the
majority of the quiz questions asked students to predict the result of a
provided Scratch program as is shown in many of the example assessment
items in the Appendix.

All quizzes were graded by the author and digitized for statistical
analysis. Questions were graded as a single point, with no partial credit.
Questions with multiple parts were graded on each part separately. The
mean performance on each quiz was calculated per treatment, by
averaging students’ scores in each treatment. A mean performance of
80% would indicate that the average performance within that treatment
for a single quiz was 80%. Students’ individual-mean performance was
calculated by determining an individual student’s mean percentage
correct across all quizzes. An individual-mean performance of 75%
would indicate that the student averaged 75% correct across all quizzes.
A Mann—Whitney—Wilcoxon test was performed to detect statistical
differences between the classes for individual quizzes and for students’
individual-mean performance.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 117

4.7. Students’ attitudes

We hypothesize that positive changes in attitude could be observed in
students in one of the treatments, responding more positively to
statements regarding their desire to pursue computer science.

On the ninth day, students answered survey questions, shown in
Table 4, regarding their confidence in programming and their intentions
to pursue learning more computer science. All responses were made on a
four-level Likert scale, with the categories of “Agree”, ‘““Agree some-
what”, “Disagree somewhat”, and “Disagree.” To simplify the analysis,
students’ responses were coded from 1 representing “Agree” to 4
representing ““Disagree.”” This coding was necessary to calculate statistics,
such as the mean response on each question for the treatment groups.
However, this simplification technique may exaggerate the difference
between ‘“‘Agree” and ‘“Agree somewhat” and may underestimate the
difference between ““Agree somewhat” and ‘““Disagree somewhat”.

On the 11th day, students answered additional survey questions,
shown in Table 8, regarding their perception of the difficulty of learning
particular programming skills and of accomplishing specific program-
ming tasks. All responses were made on the same four-level Likert scale
and were coded as aforementioned.

4.8. Students’ pacing

Logs were collected from the online curriculum and processed in an
attempt to identify whether the students in either treatment worked
through the curriculum at a faster pace. At 89 points throughout the
course, students were prompted to submit a project through the online
curriculum. Each of the steps, which prompted students to submit a
project, will be referred to as a single submission point. A relative duration
was calculated for each submission point as the average time between the
students’ submission for the previous and current submission points. We
will consider a student’s pace to be determined by the duration between
consecutive submission points, despite the fact that there were different
activities and different step types between each submission point.

Table 4. Survey questions administered on the ninth day of instruction, using a four-
level Likert scale.

I plan to continue to use Scratch after the class.

I am good at writing computer programs.

Writing computer programs is easy.

I want to be a computer scientist.

I want to take another computer programming course.

I understand more about how computer programs and games are made.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

118 C.M. Lewis

If no project was submitted for a submission point, the duration for
that and the next submission point was treated as missing data. If a
student made a submission out-of-order, any out of order submission
point was considered missing data. At the end of each class, students
often submitted partial projects to their current submission point. This
artificially lowered the mean duration for the submission. As a
precaution, we removed any submission from consideration if any
students submitted the project within 3 minutes of the end of the time
programming that day. Of the 89 submission points throughout the
curriculum, we selected 35 that had reasonably complete data. Submis-
sion points were rejected if they contained data for less than 70% of the
students’ submissions. For each of the 35 submissions, we calculated the
mean duration for students in each treatment.

We conducted t-tests to identify whether the differences in the mean
submission time for each treatment were statistically significant at the 5%
level. When conducting 35 independent z-tests, we would expect that 5%
of the 35, approximately 2, would show statistical significance purely
based upon random variation. We calculated the standard deviation for
the duration of each submission point to determine if there were different
patterns of variations within each class.

While we hypothesized that students’ pace might vary between the
treatment groups, an increased pace does not necessarily represent a core
pedagogical goal. For example, if students submitted incomplete or
incorrect projects, they may progress at an accelerated place. After
exploring opportunities for assessing differences in quality and correct-
ness, we determined that students’ submissions were not a viable data
source. As aforementioned, the rate of missing submissions was high. In
addition, the submissions frequently appeared to be a wrong file or an
incomplete version. It is possible that students forgot to save their current
file before submission and therefore submitted an incomplete version.

5. Results

The populations in each class were found to be comparable, despite the
lack of random assignment. Based upon students’ self-report of previous
experience, there is no information to suggest that the populations
differed in prior programming experience or other relevant character-
istics. We further validated comparability by (1) comparing standardized
test scores between each treatment, (2) attempting to standardize and
measure the amount of time students programmed, and (3) using
techniques to ensure that students in each treatment were attentive
during announcements and lectures.

We compared anonymous standardized test scores submitted to the
program. While the mean for both Mathematics and English tests was

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 119

slightly higher in the intermittent collaboration treatment, the differences
were not significant at the 5% level for either Mathematics (#(28) = 0.706,
d = .25) or English language arts (#(29) = 1.39, d = .25).

We compared the number of minutes programming across the
treatment groups. For most students, in-class programming represented
the entirety of their programming experience. No programming home-
work was assigned and few students reported programming at home. To
verify whether students in the treatment groups had similar amounts of
in-class programming, logs from the online curriculum were mined to
detect the total amount of time students spent programming. On the 11th
and 12th days, the students worked on a final project, and there was not
sufficient log data from the online curriculum to detect the duration of
activities. We found that students in the pair programming treatment
spent a total of 17 hours and 53 minutes programming. Students in the
intermittent collaboration treatment spent a total of 18 hours and
28 minutes, an average of 3.5 minutes more per day. Given the small
difference in the daily averages, the treatments are considered comparable
regarding time programming.

We used techniques to standardize students’ level of attention.
Although the students in the summer program were typically excellent
at following instructions, during the previous offering of the course, we
had difficulty making announcements while students were in front of their
computers. In the current study, the instructors constructed fabric
curtains that were used to cover the computer screens. When students
began to work, they were told to raise their curtains. When an instructor
wished to make an announcement, students were told to lower their
curtains. In this way, we eliminated classroom management interruptions
during announcements, directions, and lectures and, we believe, ensured
that students’ level of attention was more consistent.

These three techniques help in validating the comparability of the
treatments and the comparability of the populations within each
treatment group.

5.1. Students’ understanding

Figure 1 shows the mean performance within each treatment group for
each quiz. Students in the intermittent collaboration treatment had a
higher mean performance on eight of the nine quizzes. However, the
differences in quiz performance between the treatments were not
statistically significant at the 5% level for individual quizzes or students’
individual-mean performance.

While the mean of the students’ individual-mean performance
differs minimally between the pair and the intermittent collaboration
treatments, 66.2% and 72.4%, respectively, the differences in

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

120 C.M. Lewis

distribution are noteworthy. There was a larger range of individual-
mean performance among students in the pair programming treatment.
Table 5 shows the range of each quartile, and Figure 2 plots each of
these quartiles in a standard box plot. Students’ mean performance in
the pair programming treatment spans from 32.0% to 89.0%, while in
the intermittent collaboration treatment, the means span a range of only
53.0-85.2%.

Average Percentage Scores on Quizzes
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
Quizl Quiz2 Quiz3 Quiz4 Quiz5 Quiz6 Quiz7 Quiz8 Quiz9
~@—Pairs ==fe=Individuals

Figure 1. Average percentage score per quiz for each treatment.

Table 5. Distribution of individual students’ average quiz percentage.

Pairs (%) Individuals (%)
Maximum 89.0 85.2
Ql 75.3 81.1
Median 66.7 74.2
Q3 56.3 66.9
Minimum 32.0 53.0

Box Plot of Student Average Scores
100.0%

90.0%
80.0% +
70.0%
60.0% -
50.0%
40.0% +
30.0% +
20.0%
10.0%

0.0%
Pairs Individuals

Figure 2. Box plot of individual students’ average quiz percentage.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 121

5.2. Students’ attitudes
5.2.1. Plans to pursue computer science

For the three survey questions related to a desire to pursue computer
science, the students in the pair programming treatment responded less
positively; however, the difference between the treatment groups was not
statistically significant.

For each treatment, one student was absent during the survey, so the
response rates for the pair and intermittent collaboration treatments were
94% and 95%, respectively. Table 6 shows the average coded response
and results of each Mann—Whitney—Wilcoxon test.

Regarding the statement “I plan to continue to use Scratch after the
class”, 81% of the students from the intermittent collaboration treatment
and only 59% of the students from the pair programming treatment
responded with “Agree”, as shown in Figure 3.

Table 6. Average response to questions regarding goals to continue programming where
1 indicates a response of “Agree” and 4 indicates a response of “Disagree’ and results of
significance testing using a Mann—Whitney—Wilcoxon test.

Mean response

(1 = ““agree™; Mann-Whitney—
4 = “disagree’) Wilcoxon test
Questions Pairs Individuals z p-value
I plan to continue to use Scratch 1.5 1.18 —1.265 0.2059
after the class
I want to be a computer scientist 2.39 2.05 —1.182 0.2372
I want to take another computer 1.83 1.45 —1.506 0.1321

programming course

I plan to continue to use Scratch after the class
90%
80%
70%
60%
50%
40%
30%
20% l
10% D
0% EE—
Agree Agree Disagree Disagree
Somewhat Somewhat

@Pairs OIndividuals

Figure 3. Distribution of responses to the question “I plan to continue to use Scratch
after the class™.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

122 C.M. Lewis

A similar pattern, shown in Figure 4, occurred regarding the statement
“l want to take another computer programming course.” Sixty-two
percent of students from the intermittent collaboration treatment and
only 29% from the pair programming treatment responded with “Agree”.

As shown in Figure 5, less than 20% in each class responded with
“Agree” regarding the statement “I want to become a computer
scientist.” However, the distribution of responses for this question
showed again that students in the intermittent collaboration treatment are
more positive about pursuing computer science. Seventy-six percent
of the students in the intermittent collaboration treatment and 47% of
the students in the pair programming treatment responded that they
“Agree” or ‘“Agree somewhat” with the statement: “I want to be a
computer scientist’.

| want to take another computer programming

course
70%

60%
50%
40%
30%
20%

10% .

0% —
Agree Agree Disagree Disagree
Somewhat Somewhat
@Pairs QIndividuals

Figure 4. Distribution of responses to the question “I want to take another computer
programming course’’.

| want to be a computer scientist
70%
60%
50%
40%
30%
20%
10% . l
0% -

Agree Agree Disagree Disagree
Somewhat Somewhat

@Pairs @Individuals

Figure 5. Distribution of responses to the question “I want to be a computer scientist”.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 123

5.2.2. Confidence in programming ability

The students in the intermittent collaboration treatment were slightly
more positive regarding confidence in computer programming, as shown
in Table 7. None of the differences were statistically significant. The shape
of the distribution of these responses was nearly identical between the two
groups, and hence, the graphs have been omitted.

5.2.3. Perception of difficulty

On average, students in the pair programming treatment rated the
difficulty of various topics as slightly less difficult; however, the differences
between these averages were not statistically significant using a Mann—
Whitney—Wilcoxon test (z = 0.545; p = 0.586). The average difficulty
ratings for the pair and intermittent collaboration treatments were 2.59
and 2.50, respectively, indicating that students in the pair programming
treatment rated survey items as slightly less difficult. The mean coded
value for each question was computed for each group and is shown in
Table 8, with the larger group mean shown in bold.

A Mann—Whitney—Wilcoxon test was performed on each of the 13
survey questions related to perception of difficulty. Only one question had
differences that were significant at the 5% level; however, given the large
number of tests, this is assumed to be the result of random variation and
not indicative of differences in the perception of the difficulty between the
treatment groups.

5.3. Students’ pacing

We compared the mean from each treatment and found that for 24 of the
35 submissions or 69%, students in the pair programming treatment had

Table 7. Average response to questions regarding confidence in programming ability,
where 1 indicates a response of “Agree” and 4 indicates a response of “Disagree”, and
results of significance testing using a Mann—Whitney—Wilcoxon test.

Mean response

(1 = *“agree”; Mann—Whitney—
4 = “disagree”) Wilcoxon test
Questions Pairs Individuals z p-value
I am good at writing computer 1.89 2.09 0.770 0.4415
programs
Writing computer programs is easy 2.33 2.55 0.676 0.4990
I understand more about how 1.11 1.23 0.279 0.7800

computer programs and games
are made

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

124 C.M. Lewis

Table 8. Survey questions administered on the 11th day of instruction, using a four-
level Likert scale and mean rating, where 1 indicates a response of “Agree” and 4
indicates a response of ““Disagree”, bold indicates a higher mean response.

Pair Individual
It was difficult to learn to use Scratch 2.44 2.59
It was difficult to learn to use BYOB 2.78 2.41
It was difficult to make the squiral [square + spiral] 2.56 1.77
It was difficult to make the rainbow 1.33 1.68
It was difficult to learn to use lists 2.56 2.73
It was difficult to learn to use and 3.00 2.82
It was difficult to learn to use if 3.50 3.27
It was difficult to learn to use variables 2.78 2.32
It was difficult to learn to use broadcast 1.17 2.91
It was difficult to make the brick wall 1.78 1.77
It was difficult to learn binary 2.39 2.55
It was difficult to make the flower petals 2.06 2.68
It was difficult to draw shapes 3.39 3.05
Average rating 2.59 2.50

a higher mean time to completion. We calculated the sum of the mean
times to complete each submission. The total duration for the 35
submission points for the pair programming treatment was 7 hours and
35 minutes. The total duration for the intermittent collaboration
treatment was 6 hours and 33 minutes. That is 13.7% less time is spent
by students in the intermittent collaboration treatment across the 35
submission points.

Nine of the 35 #-tests indicated the difference between the groups to be
statistically significant at the 5% level. Eight of the nine were in cases
where the mean duration for the pair programming treatment was higher.
We would expect two of these tests to show statistical significance due
only to random variation. This suggests that the faster pace of students
in the intermittent collaboration treatment was not an anomaly
attributable to only random variation. For three of these eight, the result
was significant at the 1% level.

For 14 of the 35 submissions or 40%, students in the pair
programming treatment had a higher standard deviation. While we
found higher variation on assessment performance in the pair program-
ming treatment, there appears no significant differences of variation in
pace between the two treatments.

The instructors observed that when students in the intermittent
collaboration treatment would get stuck, their partner would show them
the correct answer. The students, who were stuck, were then able to copy
the answers and move on in the curriculum. For example, for step 3
of the multi-color flower exercise shown in Table 3, two students from the
intermittent collaboration treatment who were working as partners

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 125

submitted identical code. These identical solutions made the mistake of
changing the pen color within a single petal rather than between each
petal. Given the diversity of other submissions, this would be nearly
impossible to occur if the students had not been extensively collaborating.

On the same problem, the two students sitting in the row with these
students also showed clear signs of collaboration in their solutions, shown in
Figure 6. There are minor differences between their submissions, and no
other students in the intermittent collaboration treatment used a variable in
this program. The only significant difference between these two submissions
is the placement of the “‘change pen color by” block. The solution on the left
correctly places this block to change colors between each petal. The
submission on the right makes the same mistake as the two identical
submissions described above, by changing the color within each petal. The
submission on the right may have been influenced by his or her neighbors,
the pair of students previously mentioned, who had made the same mistake.
While this was a common mistake, Figure 6 shows clear evidence of
collaboration between this partnership and plausible evidence of collabora-
tion between members of the two partnerships.

6. Discussion
6.1. Students’ understanding

Previous research has shown greater learning gains for students using pair
programming than students working individually (Braught et al., 2011).

set flower power | to set flower to
set pen size to | flower power set pen size to | flower

set pen color to

repeat
‘pen down repeat
3

move a steps change pen color by
» »

change pen size by pen down
& L3

move a steps
set pen size to | flower power 1

»

go to x: a y: a
>

turn (& degrees set pen size to | flower
I3 J

change pen color by go to x: @ y: a

A 3

turn & degrees
-
=

change pen size by
| —

Figure 6. Submissions from a pair of students for step 3 in the multicolor flower exercise
shown in Table 3.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

126 C.M. Lewis

This pattern did not hold in the current study, where students working on
their own computer had support and intermittent collaboration.

While the differences in performance on quizzes between the
treatments were not statistically significant, the lowest scoring student
in the pair programming treatment scored much lower on average than
the lowest scoring students in the intermittent collaboration treatment,
averaging 32.0% and 66.2%, respectively. The expectation that pair
programming can improve the performance of the weakest students
through peer scaffolding does not appear to be enough to explain the
results in the current study. This observation of much lower performance
by the lowest scoring student in the pair programming treatment violates
our expectation about this potential benefit of pair programming.

It is possible that a lack of engagement from the student not using
the keyboard and mouse depressed his or her performance in the pair
programming treatment, resulting in slightly lower quiz scores and
greater variation in quiz performance. While these are most likely
attributable to random variation, it is possible that pair programming has
a greater differential benefit for students than the intermittent collabora-
tion treatment. In our experience with college students, less experienced
students frequently report passively watching their more experienced
partner program. These college students are able to articulate their lack of
understanding and explain that they rarely ask questions when they do
not understand the actions of their partner because they do not want to
inconvenience their more experienced partner. While a common narrative
amongst our college students using pair programming, this consideration
is rarely articulated in the pair programming literature. We hypothesize
that this less productive experience is also relevant to the younger
population in the study and may explain the result of Braught,
MacCormick, and Wahls (2010), who found that students in the lowest
quartile of initial competence were most successful on examinations when
paired with another student from the lowest quartile. Perhaps the less
experienced student in an unbalanced pair will be more likely to sit back
and watch his or her partner without understanding, creating a
differential benefit of pair programming. Based upon this research, our
strategy of dividing up students who were progressing at a slower pace
may have increased the difficulty for students who were not progressing as
quickly as their peers.

6.2. Differences in attitudes
6.2.1. Plans to pursue computer science

In this study, we observed that students who engaged in pair
programming were slightly less positive when asked about pursuing

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 127

computer science. While this result was not statistically significant, it is of
interest because pair programming has been shown to increase enjoyment
and interest in computer science (McDowell et al., 2003). It is possible
that the hypothesis of increased interest and enjoyment does not hold
because it is rare to compare pair programming with another highly
collaborative environment or because the current focus on sixth grade
students makes previous findings inapplicable.

Students in the pair programming treatment may have been less
positive regarding pursuing computer science because of conflicts or
discomfort in working with a partner, a decreased sense of ownership for
the products of programming, or frustration given the slower pace of task
completion. There is some evidence to suggest that students in the
intermittent collaboration treatment had a greater sense of ownership.
For example, on the second day of instruction, they persistently requested
to share their electronic keyboards with the class.

6.2.2. Relationship to prior work

The previous year, the author and co-instructor taught a course with the
same name that included programming in Logo and Scratch (Lewis,
2010). In this course, all students pair programmed and shared a
computer. The study considered the effects of programming environment
on students’ understanding, perception of difficulty, and confidence.

One treatment group programmed for 18 hours in Logo, while the
other programmed for 18 hours in Scratch. These two programming
environment interfaces differ substantially. In Logo, students type
commands, while in Scratch, students drag and drop commands to
create programs. Despite these differences in user interface, much of the
underlying structure of each language is the same, and students in each
treatment completed the same programming tasks.

The study found that students who learned Logo were comparatively
less competent at answering questions related to conditionals. Despite
the Scratch students’ better performance, the Logo students were more
confident in their programming ability.

Students in the previous study responded to the same prompt as
students in the current study: “I am good at writing computer programs.”
Of the students who learned Scratch in the previous study, 38.5%
responded with “Agree”, compared to 70.8% of the students who learned
Logo and responded with “Agree” for this statement. This finding
unearthed the question of whether Scratch, which may be perceived as a
game rather than a programming environment, can support students in
developing confidence in their programming ability.

Despite the fact that students completed exercises that they knew were
used in an introductory course at University of California, Berkeley, in the

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

128 C.M. Lewis

current study, we see an even smaller percentage of students responded with
“Agree” for this statement. Across both treatment groups, only 13.2% of
students responded with “Agree” for the statement “I am good at writing
computer programs.” The distribution of responses did not vary
significantly between the treatment groups. These data replicate the pattern
of confidence by students learning Scratch in previous work (Lewis, 2010).
Future work should investigate children’s perception of Scratch and
computer programming to evaluate the potential for Scratch to build
students’ confidence in computer programming.

6.3. Differences in pace

One observable difference between the treatment groups was in
differences in pace between points at which students submitted projects
through the online curriculum. Students in the pair programming
condition operated at a relatively slower pace than students in the
individual condition while completing required activities.

One reason for this result may be the overhead of communication in
the pair programming treatment. Research has found that students are
able to solve more difficult problems when working in pairs (Hanks,
2008); however, negotiations, discussions, and explanations may slow the
overall progress of students using pair programming.

However, our most robust hypothesis is that students can more
quickly reach a correct solution when they can each experiment on their
own computer in parallel. In the Scratch programming language, it is
very easy to test whether a current program is correct and to make
modifications to retest the program. It is likely that two students working
in parallel using this type and trial-and-error technique may stumble upon
the solution more quickly than if those two students were working
together on a single computer.

While the instructors assumed that this practice of sharing answers
would be detrimental for learning, there were no measurable differences
between the two treatment groups. This informal practice may account for
the accelerated pace of students in the intermittent collaboration treatment.

6.4. Threats to validity

The primary threat to validity is the concern that the population differed
between the two treatment groups. There were only 40 students in the
study. While there were no statistically significant differences in
standardized test scores reported, standardized test scores have been
shown to be a poor predictor of success in computer science classes
(Simon et al., 2006), and not all students submitted scores. This threat to
validity is similar to previous studies that lack information regarding the

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 129

comparability of initial populations (e.g. Kuppuswami & Vivekanandan,
2004; Mendes et al., 2006).

While there were no differences detected for students’ understanding in
this study, as in any study, it is possible that assessments were misaligned
with the competencies developed in the treatment groups. For example,
no assessment determined students’ proficiency in communicating and
clarifying plans to a learning partner. This proficiency may have increased
to a greater extent for students in the pair programming treatment, but
was not measured in this study.

The current study considered the pace of students’ submissions without
taking into account the quality of those submissions. Based upon a
sampling of submission points, this was not utilized as a method within the
study because there were a high number of missing submissions and many
errors could not reliably be attributed to students’ lack of understanding the
programming content. For example, occasionally, students appeared to
submit the wrong file or an incomplete file. It is not possible to tell in these
cases whether the student was unable to complete the activity or whether he
or she submitted a file that did not contain the most recent version of his or
her work. It may be possible to remove these barriers in future studies by
targeting relevant computer literacy skills explicitly.

7. Conclusion

This study compared two highly collaborative learning environments to
isolate aspects of pair programming that are influential for supporting
students’ understanding, attitudes and interest in computer science, and
pace. There were no statistically significant differences between students’
performance on daily quizzes; however, there was greater variation in
performance on daily quizzes for students using pair programming. There
were no statistically significant differences between students’ responses to
attitudinal survey questions; however, students who used pair program-
ming were slightly less positive for survey questions related to interest in
computer science. Students who worked on their own computers
completed exercises more quickly, but it was not feasible to validate if
the quality of students’ work was similar between the two treatments.

There are obvious benefits of pair programming over environments
without support and collaboration. Alternative forms of collaboration,
such as the intermittent collaboration treatment described here, may
provide opportunities for improved performance over solitary efforts,
without some of the drawbacks of pair programming, such as increased
likelihood of conflict and frustration (Lemov, 2010).

The level of conflict observed in the previous offering of the course is a
testament to drawbacks of pair programming, and the current study may
achieve a more ideal instantiation of pair programming than should be

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

130 C.M. Lewis

expected in a typical classroom. While some frustration may be germane
to learning to collaborate, the levels of conflict in the previous offering
seemed to exceed the levels that were pedagogically valuable.

The current study nearly eliminated the need for teacher-mediated
conflicts between pairs. While the role-switching techniques used in the
current study drastically reduced conflicts in the classroom, the strategy
of rigid and public role switching may not be appropriate for older
students, and it is likely that any techniques would need to be refined for a
given population. Future work should investigate adapting this technique
to work with older populations.

The author hypothesize that some instantiations of pair programming
are unproductive for students’ learning, engagement, and success and that
these dysfunctional pairings are common in pair programming relation-
ships. Additional research is required to understand the differential effects
of pair programming for students.

Acknowledgments

The author would like to thank her co-instructor Brittany Murlas, their laboratory
assistant Navin Eluthesen, and the students and staff of the enrichment program. Andrea
diSessa, Michael Clancy, Angie Little, Nathaniel Titterton, Katherine Lewis, and the
anonymous reviewers provided substantial reviews of the work, which greatly improved
the quality and clarity of the work.

References

Braught, G., MacCormick, J., & Wahls, T. (2010). The benefits of pairing by ability.
ACM Bulletin, SIGCSE 2010, 249-253.

Braught, G., Wabhls, T., & Marlin Eby, L. (2011). The case for pair programming in the
computer science classroom. ACM Transactions on Computing Education, 11, 1-21.

Campbell, D.T., Stanley, J.C., & Gage, N.L. (1966). Experimental and quasi-experimental
designs for research. Chicago: R. McNally.

Carver, J., Jenderson, L., He, L., Hodges, J., & Reese, D. (2007). Increased retention of
early computer science and software engineering students using pair programming. In
Proceedings of the 41st technical symposium on software engineering education and
training (CSEET'07) (pp. 115-122). Washington, DC: IEEE Computer Society.

Chi, M.T.H., de Leeuw, N., Chiu, M.H., & La Vancher, C. (1994). Eliciting self-
explanations improves understanding. Cognitive Science, 18, 439-477.

Deci, E.L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal
of Personality and Social Psychology, 18, 105-115.

Denner, J., & Werner, L. (2007). Computer programming in middle school: How pairs
respond to challenges. Journal of Educational Computing Research, 37, 131-150.
diSessa, A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA:

MIT Press.

diSessa, A.A., & Wagner, J.F. (2005). What coordination has to say about transfer. In J.
Mestre (Ed.), Transfer of learning from a modern multi-disciplinary perspective
(pp- 121-154). Greenwich, CT: Information Age Publishing.

Hanks, B. (2008). Problems encountered by novice pair programmers. Journal of
Educational Resources in Computing, 7, 1-13.

Harvey, B., & Moénig, J. (2010). Bringing ‘No Ceiling’ to Scratch: Can one language serve
kids and computer scientists? Constructionism, 2010, 1-10.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 131

Inkpen, K., Booth, K.S., Gribble, S.D., & Klawe, M. (1995). Give and take: Children
collaborating on one computer. In ACM CHI (pp. 258-259). New York, NY: ACM.
Jacobs, J.E. (2005). Twenty-five years of research on gender and ethnic differences in
math and science career choices: What have we learned? New Directions for Child and

Adolescent Development, 2005, 85-94.

Jadud, M.C. (2006). Methods and tools for exploring novice compilation behaviour. In
International Computing Education Research Workshop, ACM (pp. 73-84). New
York, NY: ACM.

Johnson, D.W., Johnson, R.T., & Smith, K.A. (1991). Cooperative learning: Increasing
college faculty instructional productivity (ASHE-ERIC Higher Education Rep. No. 4).
Washington, DC: The George Washington University.

Kuppuswami, S., & Vivekanandan, K. (2004). The effects of pair programming on
learning efficiency in short programming assignments. Informatics in Education, 3,
251-266.

Lemov, D. (2010). Teach like a champion: 49 techniques that put students on the path to
college. San Francisco, CA: Jossey-Bass.

Lewis, C.M. (2010). How programming environment shapes perception, learning and
goals: Logo vs. Scratch. ACM SIGCSE Publication, 41, 346-350.

Linn, M.C., & Hsi, S. (2000). Computers, teachers, peers: Science learning partners.
Mahwah, NJ: Lawrence Erlbaum Associates.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse: Women in computing.
Cambridge, MA: The MIT Press.

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2003). The impact of pair
programming on student performance, perception and persistence. In Proceedings of
the 25th International Conference on Software Engineering (pp. 602—-607). Washington,
DC: TIEEE Computer Society.

Mendes, E., Al-Fakhri, L., & Luxton-Reilly. (2006). A replicated experiment of
pair-programming in a second-year software development and design computer
course. Proceedings of the Special Interest Group in Computer Science Education, 38,
108-112.

Nawrocki, J., & Wojciechowski, A. (2001). Experimental evaluation of pair
programming. Paper presented at the 12th European Software Control and Metrics
Conference, London, UK.

Preston, D. (2006). Using collaborative learning research to enhance pair programming
pedagogy. ACM SIGITE Newsletter, 3, 16-21.

Schoenfeld, A.H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.

Simon, Cutts, Q., Fincher, S., Haden, P., Robins, A., Sutton, K., Baker, B., ... Tutty, J.
(2006). The ability to articulate strategy as a predictor of programming skill. In
Proceedings of the Sth Australian computing education conference. Darlinghurst,
Australia: Australian Computer Society, Inc.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and
explanations. Communications of the ACM, 29, 850-858.

Titterton, N., Lewis, C.M., & Clancy, M. (2010). Benefits of lab-centric instruction.
Computer Science Education, 20, 79-102.

Tomlinson, C.A., & Allan, S.D. (2000). Leadership for differentiating schools and
classrooms. Alexandria, VA: Association for Supervision & Curriculum
Development.

Voss, J.L., Gonsalves, B.D., Federmeier, K.D., Tranel, D., & Cohen, N.J. (2010).
Hippocampal brain-network coordination during volitional exploratory behavior
enhances learning. Nature Neuroscience, 14, 115-120.

Vygotsky, L.S. (1978). Mind in society: The development of higher psychological processes.
Cambridge, MA: Harvard University Press.

Werner, L., & Denning, J. (2009). Pair programming in middle school: What does it look
like? Journal of Research on Technology in Education, 42, 29-49.

Werner, L.L., Campe, S., & Denner, J. (2005). Middle school girls + games
programming = Information Technology fluency. In SIGITE (pp. 301-305). New
York, NY: ACM.

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

132 C.M. Lewis

Appendix. Sample questions from each of the nine quizzes

Quiz 1: How many times does the note 67 play when you double click the script below?

play note for m beats
3

play note @ for m beats
-
—

-

Quiz 2: What numbers does the character say when you double click the script below?

move - steps
»
turn (& - degrees
» - —
=

Quiz 4: The character starts at the arrow, facing the same direction as the arrow. Draw
what the character draws when you double click the script.

set lqn-;th to m

repeat (3
move length steps »

»
turn (& m degrees
.

change length by BT

~

set my number |to B

change my number |by e
: e

(continued)

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

Computer Science Education 133

Appendix. (Continued).

Quiz 6: What is the value of x after double clicking on the script below?

set my length |to E3
if my length > [

'(hanqe N 10 |

if my length < B

Quiz 7: If the script below is double clicked, what color would the pen be if the mouse is
at each position described in the table below? [table omitted]

set pen color to
if mouse y = [1]

set pen color to
-

if mouse y = m

set pen color to
~

if mouse x > FIlT

set pen color to
»

if mouse x > FL)

set pen color to -

mouse x < m

set pen color to

Quiz 8: Draw a script that would say every element in the player-list, no matter how long
the player-list is. You can use the variable “index”.

(continued)

Downloaded by [b-on: Biblioteca do conhecimento online UL] at 08:09 03 March 2016

134 C.M. Lewis

Appendix. (Continued).

Quiz 9: We have made this new block:

say X y z

say 'y for 3 secs
say ‘x for) secs

say 'z for secs

What will it say when we double click on the script below?

say HE 0

say B 3 EA

