
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Download by: [b-on: Biblioteca do conhecimento online UL] Date: 03 March 2016, At: 07:47

Computer Science Education

ISSN: 0899-3408 (Print) 1744-5175 (Online) Journal homepage: http://www.tandfonline.com/loi/ncse20

Pair programming in education: a literature review

Brian Hanks , Sue Fitzgerald , Renée McCauley , Laurie Murphy & Carol
Zander

To cite this article: Brian Hanks , Sue Fitzgerald , Renée McCauley , Laurie Murphy & Carol
Zander (2011) Pair programming in education: a literature review, Computer Science
Education, 21:2, 135-173, DOI: 10.1080/08993408.2011.579808

To link to this article: http://dx.doi.org/10.1080/08993408.2011.579808

Published online: 17 Jun 2011.

Submit your article to this journal

Article views: 527

View related articles

Citing articles: 3 View citing articles

http://www.tandfonline.com/action/journalInformation?journalCode=ncse20
http://www.tandfonline.com/loi/ncse20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2011.579808
http://dx.doi.org/10.1080/08993408.2011.579808
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/08993408.2011.579808
http://www.tandfonline.com/doi/mlt/10.1080/08993408.2011.579808
http://www.tandfonline.com/doi/citedby/10.1080/08993408.2011.579808#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/08993408.2011.579808#tabModule

Pair programming in education: a literature review

Brian Hanksa*, Sue Fitzgeraldb, Renée McCauleyc, Laurie Murphyd and
Carol Zandere

aBFH Educational Consultants, Seattle, WA 98119, USA; bDepartment of Information &
Computer Science, Metropolitan State University, Saint Paul, MN 55106, USA;
cDepartment of Computer Science, College of Charleston, Charleston, SC 29424, USA;
dDepartment of Computer Science & Computer Engineering, Pacific Lutheran University,
Tacoma, WA 98447, USA; eDepartment of Computing and Software Systems, University
of Washington Bothell, Bothell, WA 98011, USA

(Received 15 September 2010; final version received 2 April 2011)

This article provides a review of educational research literature focused
on pair programming in the undergraduate computer science curricu-
lum. Research suggests that the benefits of pair programming include
increased success rates in introductory courses, increased retention in the
major, higher quality software, higher student confidence in solutions,
and improvement in learning outcomes. Moreover, there is some
evidence that women, in particular, benefit from pair programming. The
literature also provides evidence that the transition from paired to solo
programming is easy for students. The greatest challenges for paired
students appear to concern scheduling and partner compatibility. This
review also considers practical issues such as assigning partners,
teaching students to work in pairs, and assessing individual contribu-
tions, and concludes with a discussion of open research questions.

Keywords: pair programming; collaborative learning

1. Introduction

Pair programming is a technique in which two individuals share a single
computer as they work together to develop software. Although pair
programming has been used in industry since the 1970s (Jensen, 2003), it
has become much more popular in education in the last 10 years as part of
the agile software development movement (Beck, 2000). Its use in
educational settings has also increased significantly since first being used
at the University of Utah in the late 1990s (Williams, 2000), with reported
usage in the US (for example, Braught, Eby, & Wahls, 2008; McDowell,
Werner, Bullock, & Fernald, 2003; Williams, & Kessler, 2001), the United
Kingdom (Chaparro, Yuksel, Romero, & Bryant, 2005; Thomas,

*Corresponding author. Email: hanks.brian@gmail.com

Computer Science Education

Vol. 21, No. 2, June 2011, 135–173

ISSN 0899-3408 print/ISSN 1744-5175 online

� 2011 Taylor & Francis

DOI: 10.1080/08993408.2011.579808

http://www.informaworld.com

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

Ratcliffe, & Robertson, 2003), Germany (Müller & Tichy, 2001), New
Zealand (Mendes, Al-Fakhri, & Luxton-Reilly, 2006), India
(Kuppuswami & Vivekanandan, 2004), and Thailand (Phongpaibul &
Boehm, 2006).

This article provides a review of the pair programming research
literature and is focused on the study of pair programming in the
undergraduate curriculum. A majority of these studies focus on
introductory programming, although research on pair programming in
upper-level and graduate courses, and some from industry as it relates to
education, is also reported.

Section 2 summarizes research findings about the benefits of pair
programming in higher education. Section 3 addresses the challenges of
scheduling and partner compatibility, and the transition to solo
programming. Section 4 addresses the practical matters of introducing
paired programming in classroom settings. Section 5 closes with a
summary of open research questions. In the appendix, a table maps
papers to the sections where they are discussed.

2. Educational benefits of pair programming

In educational settings, pair programming is frequently used in
introductory programming courses as there is notable evidence that its
use helps students learn to program. However, it has also been used in
second-year courses, in upper division courses such as software
engineering or object-oriented programming, and even at the graduate
level. In this section, research findings about the benefits of pair
programming in an educational setting are presented.

2.1. Success in first- and second-year programming courses

Learning to program is difficult for many students. Failure and
withdrawal rates in introductory programming courses of 33% or greater
are not uncommon (Bennedsen & Caspersen, 2007). Studies of pair
programming in introductory programming courses offer compelling
evidence that it can help reduce these high failure rates.

One of the most extensive studies of pair programming was conducted
by McDowell, Werner, Bullock, and Fernald (2003, 2006) in 2000 and
2001. They studied the impact of pair programming on student
performance in four sections of an introductory programming course
(CS1) at the University of California, Santa Cruz. Students in three of the
sections worked in pairs (n ¼ 404), while students in the fourth section
worked alone (n ¼ 148). The paired students worked on all of their
programming assignments (both closed labs and homework) with their
partner. There was no evidence for a difference between the groups in

136 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

terms of grade point averages (GPA) and SAT exam scores. (The SAT
exam is typically taken by high school students in the US to assess their
preparation for college).

Paired students were significantly more likely than non-paired students
to take the final exam (90.8% vs. 80.4%, w2(1) ¼ 11.21, p 5 0.001) and
to pass the course (72.3% vs. 62.8%, w2(1) ¼ 4.57, p 5 0.05). Although a
larger percentage of paired students took the final exam, both groups
earned similar scores (pairs: 75.2%, solos: 74.4%). As a result, a larger
proportion of the paired students demonstrated sufficient mastery of the
course material to pass the final exam and the course. This suggests that
paired students are as able to apply their learning independently as
students who work alone.

Nagappan et al.’s (2003) study of pair programming found that final
course grades for students engaged in pair programming were equal to or
better than those of solo programmers. Students in CS1 were arbitrarily
assigned to closed lab sections where they were either partnered or
required to work individually. Partners were assigned randomly and
changed every 2–3 weeks. The experiment ran for three semesters and
included 661 students (380 paired; 281 solo). Data analysis was limited to
first- and second-year students who were taking the course for a grade.

Students were also given programming assignments which were to be
done outside the closed lab setting. There was some variation in
expectations for pairing vs. individual work on these assignments as the
experiment progressed. In the first semester, all students enrolled in the
class were permitted to pair on their programming assignments if they
wished. In the second semester of the experiment, pairing on outside
programming assignments was limited to those students who performed
well on their tests (scores of 70% or higher). In the third semester,
students were required to work on their programming projects with their
lab partners. As a consequence, data analysis was performed separately
for each semester. Overall, Nagappan et al. (2003) found that course
grades for paired students were equal to or better than the course grades
for those students who worked individually in the labs.

In a 2-year study at a small liberal arts college, Braught et al. (2008)
investigated the impact of pair programming in CS1. In their study,
students in four sections of CS1 programmed by themselves, while
students in four other sections worked in pairs during supervised lab
sessions. All other works (including programming assignments) were
completed individually. Students in both groups had similar SAT scores.

The students’ programming abilities were assessed by individual lab
practica in which students had 2 h to work on programming problems.
For students with lower SAT scores (less than 1265), the students in the
paired sections of the course received higher lab practica scores than those
in the solo sections. There was no statistically significant difference in lab

Computer Science Education 137

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

practica scores between the paired and solo sections for the students with
higher SAT scores; these students tended to receive high lab practica
scores regardless of their section.

This research also showed that, for a given SAT score, students who
paired were more likely to pass the course (with a grade of C or better)
than those who worked alone. The odds of paired students passing the
course were approximately three times that of solo students. These results
suggest that pair programming may be particularly helpful for weaker
students.

Somervell (2006) also investigated pair programming in CS1. In his
study, 16 students in one section of CS1 paired, while 20 students in a
second section worked alone. The instructor, exams, assignments, and
lecture material were the same for both sections. Somervell hypothesized
that students in the paired section would outperform students in the solo
section in terms of grades on programming assignments, exams, and in the
course in general. However, none of his hypotheses were supported by the
data, and he found no evidence that pairing provided any benefits for
students. Students in both sections performed equivalently on all measures.

Mendes, Al-Fakhri, and Luxton-Reilly (2005) investigated the impact
of pair programming in a second-year software design and construction
course in New Zealand. In this study, 114 students paired and 186
students worked alone on their closed laboratory exercises. These
exercises were for practice only, and were not included as part of the
course grade. All other work in the course was done individually.

They found that the students who worked in pairs for lab exercises
passed the course (with a grade of C or better) at a higher rate than the
students who worked alone. They obtained similar results when they
replicated their experiment the following year (Mendes et al., 2006). In
their follow-on study, they also found that paired students earned higher
grades on their individual work, including programming assignments,
tests, and the final exam.

Taken together, these studies provide some evidence that pair
programming leads to increased student success in introductory and
intermediate programming courses.

2.2. Success in later courses

Educators may be concerned that students who pair in their first
programming course might not succeed in later courses where they have
to work alone. It appears likely that this concern is unfounded, because
research evidence thus far has shown no detrimental effect of pairing on
the success of students required to work alone in later courses.

McDowell et al. (2006) tracked their study participants for a year after
they had taken their introductory programming course. Of the students

138 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

who took the second programming course, those who pair programmed
in the introductory course were more likely to pass the second course on
their first attempt (65.5% pairs, 40.0% solos), even though all students
were required to work alone in the second course. It appears that, by
pairing in the first course, students were able to build a foundation that
led to later success when they had to work alone. It also seems to refute
the notion that pair programming results in weak students passing the
first programming course by over-relying on their partners, only to fail
later when they have to work alone.

Nagappan et al. (2003) also examined the performance of CS2
students who paired in CS1 in order to allay concerns about weaker
students getting a ‘‘free ride’’ in CS1. The CS2 course had stringent
requirements for solo programming on all assignments. They found
mixed results. In one term, formerly paired students performed much
better in CS2 than those who were not given the opportunity to pair in
closed labs in CS1 (69.70% of the formerly paired students passed CS2
with As or Bs compared to 44.82% of the formerly solo students). In the
following term, solo students performed better than formerly paired
students (85.25% of the formerly solo students passed the course with As
or Bs compared to 71.43% of the formerly paired students). Both results
were statistically significant. Nagappan et al. (2003) went on to analyze
those students whose grades in CS2 dropped below their CS1 grades. For
both terms, grades dropped for a greater percentage of formerly solo
students than formerly paired students (21.42% of paired students’ grades
dropped in CS2 vs. 46.15% of the solo students in the first term; 26% of
paired students’ grades dropped in CS2 vs. 30% of the solo students in the
second term). They conclude, ‘‘pair programming is not detrimental to a
student’s performance in future programming courses done in solo’’
(Nagappan et al., 2003, p. 194).

Jacobson and Schaefer (2008) found no evidence that students who
pair in their first programming course struggle when asked to program
individually in subsequent courses. Survey results and instructor
conversations indicated that students in following courses had no
difficulty switching from pair to individual programming.

2.3. Retention

Retention in computing-related majors is a significant concern, particu-
larly when enrollments decline. Allowing students to pair program in
their introductory course appears to have a positive effect on retention.

Carver, Henderson, He, Hodges, and Reese (2007) conducted a 2-year
study of pair programming in CS1 and its impact on student retention in
computing-related majors. To measure retention, they recorded the major
of all students who were freshman when they took CS1, and then looked

Computer Science Education 139

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

at the major of these students 1 year later. In one section of the course, 75
freshmen pair programmed on their closed laboratory exercises, while 79
freshmen in three other sections did not pair. All other works in these
courses were completed by students working alone. For students who
were computing majors when they took the CS1 course, 85.4% (41 of 48)
of those in the paired section were still majors 1 year later, while only
64.3% (36 of 56) of those who worked alone in CS1 were still majors. This
difference in retention rates was statistically significant (p ¼ 0.014).
However, pair programming did not attract non-majors, as no students
who were not majors when they took CS1 were majors 1 year later. On
the other hand, using pair programming did not appear to discourage
non-majors, as none of the soloing non-majors became CS majors either.

Students who paired in McDowell et al.’s study (2006) were much
more likely to take the second programming course. Of the students who
indicated that they intended to pursue a computing-related major when
they were enrolled in CS1, and passed CS1 with a grade of C or better,
significantly more of those who paired attempted the second program-
ming course within 1 year (84.9% of paired students vs. 66.7% of solo
students). These students were also much more likely to persist in a
computing-related major. For those students who indicated a desire to
major in computer science when they took CS1, the pairing students were
significantly more likely to have declared a computing-related major 1
year later: 70.8% of paired students compared with 42.2% of solo
students (w2(1) ¼ 12.18, p 5 0.001, McDowell et al., 2003).

2.4. Quality of programs produced by pairs

The ultimate goal of programming courses is to teach students how to
develop quality software. Research studies have shown that pairs produce
higher quality code than solo programmers, although this does not
necessarily suggest that the students who paired learned more as a
consequence. In these studies, software quality has been measured in
many different ways.

Williams and Kessler (2001) measured quality according to the
number of test cases the software passed. They found that programs
developed by pairs passed significantly more (p 5 0.01) of the
instructor’s test cases than those developed by solo programmers.

McDowell et al. (2003) also found that students who paired produced
higher quality programs than those who worked alone. They measured
quality (based on functionality and readability) as the normalized average
score on programming assignments, and found that paired students
earned an average score of 86.6% while unpaired students received scores
that averaged 68.1%. This difference was statistically significant
(F(1,482) ¼ 77.42, p 5 0.001).

140 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

Although pairs in the McDowell et al.’s (2003) study produced higher
quality programs than students who worked alone, the two groups did not
work on the same assignments. Programs given to the paired and unpaired
students were intended to be of similar complexity, yet it is possible that
the unpaired students’ assignments were more challenging, and as a result
they did not do as well. In an effort to address this question, Hanks,
McDowell, Draper, and Krnjajic (2004) conducted a follow-on study to
investigate the differences in the quality of programs produced by paired
and unpaired students. In this study, students in a paired section of CS1
were given the same programming assignments as the students in the solo
section of theMcDowell et al.’s (2003) study. Hanks et al. (2004) compared
the programs produced by the paired and unpaired students using both
objective and subjective measures. Objective measures included program
length, number of features correctly implemented, and cyclomatic com-
plexity (McCabe, 1976). Subjective measures included the use of appro-
priate variable names, method organization, and programming style.

Hanks et al. (2004) found that pairs were able to correctly implement
more of the required features in their programs than unpaired students.
For other measures, their results were inconsistent. On some program-
ming assignments, pairs produced programs that were less complex and
better designed, while on other assignments the opposite was the case.

However, Hanks et al. (2004) reported one unexpected, but important,
result. Paired students were much more likely to turn in solutions to the
programming assignments, and these solutions were more likely to
compile without error than solutions turned in by students who worked
alone. These greater submission and error-free compilation rates suggest
that paired students are able to overcome problems that frustrate solo
students, who may give up.

Phongpaibul and Boehm (2006) compared the quality of programs
developed by student teams in a junior-level software engineering class in
Thailand. They studied two conditions: teams in which students pair
programmed, and teams in which students worked alone and used
software inspections (Ackerman, Buchwald, & Lewski, 1989) to find
defects. These conditions were randomly assigned to the student teams.
The pair development groups’ projects had fewer problems than the
projects developed by the inspection groups. There were statistically
significant differences in the number of major problems and the total
number of problems between the two groups. This suggests that teams of
pairing students produce higher quality work than teams of students
working independently, even when those teams use software inspection,
which has been shown to be a highly effective technique for defect
reduction (Ackerman et al., 1989).

Bipp, Lepper, and Schmedding (2008) examined the impact of pair
programming on teamwork. In their study, 63 second-year students were

Computer Science Education 141

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

randomly assigned into teams of seven or eight people. The teams were
then randomly assigned to one of two working conditions: the team
members programmed individually, or they pair programmed within their
team. They found that the programs developed by the teams in which the
students worked in pairs were less complex in terms of coupling and
cohesion. The code produced by the paired teams was also judged by
external experts to be ‘‘a little bit better’’ and was more readable and
understandable.

Students also report that pairing leads to fewer programming errors.
In a study of CS2 students, DeClue (2003) reported that students believed
that they made fewer errors when they programmed in pairs, and that the
errors they did make were found sooner. Similarly, Melnik and Maurer
(2002) found that 84% of undergraduate and graduate students, in three
separate classes at two Canadian institutions, agreed with the statement
‘‘I believe that pair programming improves software development quality
(better design, code easier to understand)’’.

Improved quality is also seen as a benefit by professional
programmers. In a survey of 106 software developers at Microsoft
with pair programming experience, the most frequently cited benefit of
pairing was that the resulting code had fewer bugs (Begel & Nagappan,
2008). Another frequently cited benefit in this study was that the partners
could learn from each other, which is also a benefit in educational
settings.

It is important for computing instructors to remember that the goal of
programming courses is for students to learn how to program, and that
the various measures of program quality used in these studies may not be
strong indicators of student learning.

2.5. Confidence in solutions

Much of the research investigating student confidence has looked at the
influence of perceived self-efficacy on programming success, with mixed
results (e.g, Cantwell Wilson, 2002; Ramalingam, LaBelle, & Wieden-
beck, 2004; Wiedenbeck, 2005). Research into pair programming,
however, has looked more specifically at the influence of pair program-
ming on students’ confidence in the correctness of their solutions.
Although studies that directly linked pair programming with objective
measures of perceived self-efficacy were not found, Bandura’s (1977)
extensive research on self-efficacy suggests that observing peers while they
successfully complete challenging tasks and social persuasion, both
natural components of pair-programming, can improve self-efficacy.

Many studies have shown that students who pair are more confident
than those who program alone, although some students are ambivalent
about the relationship between pairing and confidence. In the McDowell

142 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

et al.’s (2003) study discussed earlier, students answered the following
question when they turned in their programming assignments:

On a scale from 0 (not at all confident) to 100 (very confident), how
confident are you in your solution to this assignment?

The paired students were significantly more confident in their work than
the students who worked alone (89.4 vs. 71.2, F (1,482) ¼ 99.38,
p 5 0.001).

In the Hanks et al.’s (2004) study which compared the quality of
student programs produced by solos and pairs, they asked their subjects
the same question, and found confirming evidence that pairs are more
confident in their work. Students who worked in pairs indicated a
confidence level of 81.6 compared with a confidence level of 72.7 for
unpaired students. The probability that paired students actually were
more confident in their work was 99.9%.

In their study of eight sections of CS1 in which students in four
sections paired for laboratory assignments, Braught, Wahls, and Eby
(2011) asked students to indicate their level of agreement with the
statement, ‘‘When I submitted my laboratory assignments I was confident
that they were correct,’’ and found that students who paired were more
confident in their solutions on their lab practica than students who
worked alone (F (1, 136) ¼ 6.35, p ¼ 0.013). The paired students were
also more confident in the completeness of their testing (F (1,
137) ¼ 8.87, p ¼ 0.003). Braught et al. (2011) asked similar questions
about homework assignments and exams, and found no difference
between the paired and solo students. For this study, pair programming
was used only for lab assignments; all other works in the class were done
by students working alone.

End-of-term survey results from a large study of CS1 students
(VanDeGrift, 2004) also suggests that pairing increases student con-
fidence. Students in the course generally agreed with the statement, ‘‘I had
more confidence in my solutions to the pair programming projects than
the individual homework assignments in this course’’.

DeClue (2003) asked students who paired in a CS2 course to answer
the question, ‘‘Did having a partner increase your confidence that your
code was more reliable (i.e. had fewer bugs, wouldn’t crash as easily)?’’.
The question was asked three times during the semester (when students
changed partners). The response was ‘‘overwhelmingly positive’’ (DeClue,
2003, p. 52), showing that students believed having a partner gave them
more confidence in the reliability of their programs.

In a graduate level course on extreme programming, 75% of students
indicated that one of the advantages of pair programming was that they
had more confidence in their solutions of their project assignments
(Müller & Tichy, 2001).

Computer Science Education 143

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

In one of the earliest studies of pair programming in academia, more
than 80% of students who pair programmed in two upper division
software development courses indicated they had greater confidence in
their work when they pair programmed (Williams, 2000). Two years
earlier, Nosek (1998) reported similar findings with programmers
working in industry.

Qualitatively, students’ views regarding the relationship between pair
programming and confidence may be less consistent. Simon and Hanks
(2008) interviewed eleven students who paired in their first programming
course but went on to program individually in their second programming
course. Although two of the subjects reported that transitioning to solo
programming lowered their confidence in their programming ability, five
reported that their confidence increased as a result of solving the problems
by themselves. Although this study looked at confidence in programming
ability instead of solutions, it suggests that it may be important for
students to program individually at some time to build their confidence.

2.6. Attitudes toward pairing

In general, the literature shows that students enjoy pair programming
more than solo programming, with few exceptions. Students claim that
pair programming is fun, enjoyable, and useful for a wide variety of tasks.

Nosek (1998) found, with statistical significance, that programmers
working in pairs enjoyed the experience more than those working alone.
Similarly, Williams (2000) found that 95% of programmers enjoyed their
programming work more when they worked collaboratively rather than
individually.

Chaparro et al. (2005) conducted an exploratory study of pair
programming in a post-graduate, object-oriented programming course.
In this course, students were required to pair in three laboratory sessions,
which each focused on different activities: program comprehension,
debugging, and refactoring. Fifty-eight students (out of 80 in the course)
volunteered to participate as subjects, but there is no indication of the
subjects’ experience level or other background information. Experimental
data were collected from participant observation, questionnaires, semi-
structured interviews, and field notes. By triangulating the data collected
via these different means, Chaparro et al. (2005) were able to provide
stronger support for their results.

In data from their observations and field notes, Chaparro et al. (2005)
determined that students enjoy the collaborative experience of pairing, as
they ‘‘celebrated every achievement while trying to solve the exercise.’’
However, they also noted that higher skilled students sometimes became
frustrated when things were going wrong. This was not a problem for
lower skilled students, as for them doing something wrong was not

144 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

unexpected, and they were happy to have someone else to work with to
overcome their problems.

Chaparro et al. (2005) found that the majority of students agreed with
the statement, ‘‘I enjoyed doing pair programming today.’’ However, the
percentage of students who agreed differed based on the task that was
being done: 84% of students enjoyed pair programming when working on
program comprehension tasks, 78% enjoyed it for refactoring tasks, but
only 58% found it enjoyable when debugging.

In contrast, end-of-term survey results from VanDeGrift (2004) found
that CS1 students not only enjoyed working together on pair projects, but
also felt pairing helped them debug more effectively. Students generally
agreed with the statement, ‘‘I was more efficient in debugging my code
while working with a partner on the projects versus working individually
on the homework assignments’’.

McDowell et al. (2003) found that paired students enjoyed working on
their programming assignments more than students who worked alone.
When students turned in their programming assignments, they responded
to the following question: ‘‘How much did you enjoy working on this
programming assignment? (1 ¼ not at all, 7 ¼ very much).’’ Paired
students reported a mean enjoyment level of 5.15, which was significantly
greater than the mean level of 4.69 reported by the non-paired students
(F(1, 482) ¼ 9.00, p 5 0.005).

Thomas, Ratcliffe, and Robertson (2003) paired first-year students
with prior programming experience for two assignments. Using self-
perception of programming confidence, students rated themselves on a
scale from 1 to 9. A low number meant they did not like programming,
they did not think they were good at it, and they had trouble writing new
programs (the ‘Code-a-Phobes’). A high number meant they had no
trouble completing programming tasks, loved to program, and antici-
pated no difficulties (the ‘Code Warriers’). Students were categorized into
three groups based on their self-perception rating: 1–3 (17 students), 4–6
(34 students), and 7–9 (13 students).

For the first assignment, students in the high and low self-perception
groups were paired with opposites, while middle group students were
paired with each other. Overall, 66% of the students enjoyed the
experience. However, the most self-confident students reported enjoyment
only 53% of the time.

For the second assignment, students were given partners with similar
confidence levels. The pairs of high confidence ‘Code Warrier’ program-
mers reported higher levels of satisfaction than they had when paired with
less confident partners (58% enjoyed the second assignment vs. 53% in
the first assignment). However, they still enjoyed the experience less than
the rest of the participants (58% vs. 64% overall). Overall, 44% reported
liking the second experience more than the first (and 38% reported liking

Computer Science Education 145

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

it as much), implying that matching confidence levels leads to higher
satisfaction. Of particular interest, a higher percentage, 60%, of the less
confident ‘Code-a-Phobe’ group said they enjoyed the second experience
more than first experience where they were paired with highly confident
partners. Although these results suggest that less confident students enjoy
pair programming more, none of the differences were statistically
significant.

Hanks (2006) examined student attitudes toward pair programming,
by surveying 115 students in three CS1 classes where pair programming
was used. He asked students to indicate their level of agreement with the
statements, ‘‘I like pair programming,’’ and ‘‘I had more fun in this class
because I pair programmed.’’ The mean response levels over all classes to
these questions were highly positive, and significantly differed from a
neutral response (p 5 0.001).

Hanks (2006) also examined the relationship between student
confidence and attitudes toward pair programming. In his study, the
most confident students also enjoyed pair programming the most.
Although this finding seems to contradict that of Thomas et al. (2003),
different measures of confidence were used in the two studies. As Thomas
et al. (2003) note, their measure of confidence was conflated with skill
level, while Hanks (2006) used students’ self-reported confidence in their
programming assignment solutions as his measure.

Nagappan et al. (2003) surveyed their paired CS1 students to
determine the students’ attitude toward pair programming. They asked,
‘‘If you are in a paired section this semester, will you choose a paired
section course in the next semester, given there is a paired section?’’ In the
first term of the experiment, 59.9% of the paired programmers said they
would choose pair programming again. In the second round of the
experiment, 64.7% of the paired CS1 students said they would choose
pair programming again. Nagappan et al. (2003) inferred that ‘‘students
in paired labs have a positive attitude toward collaborative programming
settings’’ (p. 196), even though more than a third of the students each
term would not have chosen pair programming again.

2.7. Impact and perceived impact on learning

Reports on measurable learning outcomes show that pair programming is
beneficial. Moreover, several studies have examined students’ impressions
of the impact of pairing on learning, and have found that students believe
pair programming leads to improved learning. Observations of student
interactions suggest that collaborative and explanatory activities lead to
deeper-level thinking. On the other hand, interviews of a small sample of
students reveal that during pairing some students did not fully understand
what their partners were doing.

146 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

In a series of experiments involving 214 students (as 58 pairs and 98
solos), Kuppuswami and Vivekanandan (2004) had students create
solutions to small programming problems. Initially, the students devel-
oped design documents for their programs, which were corrected by a
laboratory instructor. The students then spent as much time as necessary
to develop a correct program (i.e. a program that passed all test cases) –
the amount of time required ranged from about 75 to 215 min.
Immediately after completing the program, the students individually
took a paper-based exam which assessed programming skills and
knowledge gained in the exercise.

Kuppuswami and Vivekanandan (2004) found that the students who
paired in these experiments performed better on the individually-taken
post-tests than the students who worked by themselves. The paired
students also received higher marks on their program designs. This
suggests that working in pairs leads to improved learning.

In a large study of CS1 students (VanDeGrift, 2004), positive results
were obtained from Likert survey responses to both ‘‘I learned about
concepts covered in the course by working with a partner on projects.’’
and ‘‘I gained more understanding of concepts in the course by explaining
them to my project partner’’.

In their study of second-year students working in teams, Bipp et al.
(2008) required pair programming in some teams but not in others. They
found that students who worked individually in project teams indicated
greater agreement with the statements, ‘‘The work load was not equally
distributed in our group’’ and, ‘‘I barely know some parts of the project’’
than students on paired teams. These differences in response levels were
statistically significant. This finding suggests that using pairing within
teams is an effective way to get all members to contribute equally, and
improves learning because the students have greater familiarity with all
aspects of their projects. It appears that pair programming may be an
effective way to integrate less experienced or less confident students into
project teams as equal contributors.

As part of their 2-year study of pair programming in CS1, Carver et al.
(2007) asked students to indicate their level of agreement with the
statement, ‘‘I learned more working with a partner on this programming
assignment than I would have without a partner.’’ They found that the
students strongly agreed with this statement. Although this question only
assesses student impressions of learning, it suggests that students believe
that one of the benefits of pair programming is the opportunity to learn
from a partner. As noted earlier, professional programmers express the
same view (Begel & Nagappan, 2008).

In his study of student attitudes toward pair programming, Hanks
(2006) asked students to indicate their level of agreement with the
statement, ‘‘I learned more in this class because I pair programmed,’’

Computer Science Education 147

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

using a 7-point scale where ‘‘1’’ indicated strong disagreement and ‘‘7’’
indicated strong agreement. The mean response level for all students was
5.07 (which differed significantly from the neutral response of 4
(p 5 0.001)), indicating that students believe pair programming helps
them learn.

Chaparro et al. (2005) also asked students to provide a measure of
their impression of learning due to pair programming. After each of the
three paired laboratory exercises in their study, students indicated their
level of agreement with the statement, ‘‘I think I’ve learned more this time
working in pairs than others that I’ve worked on my own.’’ The students
tended to agree with this statement, which suggests that they believe that
pair programming helps them learn. There was also an indication that
there is a relationship between a student’s skill level and his or her
perception of learning, as less-skilled students frequently reported that
they learned more by pairing.

There was also a significant interaction between perceived learning and
task type. On the program comprehension task, 55% of the subjects
agreed with the statement, while only 4% disagreed. The percentages were
similar for the refactoring task, with 65% agreeing and 6% disagreeing.
However, on the debugging task, 48% of the students agreed that they
learned more by pairing, but 22% disagreed. This finding suggests that
pair programming may not be as useful for learning about debugging as it
is for learning other types of programming tasks.

In Thomas et al. (2003), where students reporting extreme opposite
confidence levels were paired and students with middle-ranging con-
fidence were paired with each other, 66% of the students thought pair
programming helped them produce a better solution. But the most self-
confident students thought pair programming led to a better solution only
47% of the time. For a second assignment, students were all paired from
the same groups. In the high confidence group, 67% said the pairing led
to a better product (compared to 65% overall).

In their study of computer science graduate students enrolled in an
extreme programming course, Müller and Tichy (2001) asked the students
to identify the advantages of pair programming. Every student listed the
ability to learn from their partner as an advantage.

Cao and Xu (2005) observed student pair programmers to identify the
types of interactions that they used. In their study, the student
participants had taken at least one prior programming course, and also
had IT work experience. The students in their pairs commonly engaged in
the following activities: asking for advice, requesting and giving
explanations, critiquing each other’s approach, and summarizing just
completed tasks. They argue that these collaborative and explanatory
activities account for pair programming’s educational benefits, because
they promote deeper-level thinking.

148 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

Students who paired during a 6 week project in a CS2 course felt that
pair programming allowed them to think of more ideas about possible
programming solutions (DeClue, 2003). This theme was echoed by the
students interviewed by Simon and Hanks (2008) (who paired in their first
programming class but worked alone in their second), who said that they
explored more ideas or potential solutions when they paired.

On the other hand, the students interviewed by Simon and Hanks
(2008) also stated that they understood their code better when they
worked individually. Their comments revealed that during pairing they
sometimes did not fully understand what their partners were doing. At the
same time, the students recognized the power of applying two minds to
solving a problem.

As Kuppuswami and Vivekanandan (2004) notes, students who pair
are able to answer more of their own questions, instead of asking a
laboratory instructor for assistance. Nagappan et al. (2003) collected
qualitative data from focus groups and observations of closed labs. The
lab instructors in solo programming sections were often overwhelmed by
students with basic syntax questions and were unable to assist all students
who had questions in the time allocated. On the other hand, paired
students were able to answer most of these basic syntax questions by
helping each other. They asked more sophisticated questions about their
algorithms when they did interact with the lab instructor. Hanks (2008b)
also found that paired students asked fewer questions in closed labs, but
in his study the proportion of basic syntax questions was the same for
paired and solo students.

2.8. Social aspects of pairing

Pair programming provides students with an opportunity to meet their
peers, which can be especially important for firs-year students. The peer
relationships established by pairing in the introductory programming
course often lead to support groups that help students succeed in later
courses (Jacobson and Schaefer, 2008). Jacobson and Schaefer (2008) also
note that pairing helps students learn to work well with others, a valuable
social skill. Somervell (2006) notes that pairing gives students valuable
teamwork experience.

Students surveyed by Cliburn (2003) confirm this, as 92% of them
agreed that the experience of pair programming made them better at
working with others. Cliburn (2003) argues that this result makes, ‘‘the
strongest case for pair programming in the introductory programming
course’’ (p. 27).

Simon and Hanks (2008) also reported on the social aspects of pair
programming. They interviewed eleven students who initially learned to
program as pairs, then solo programmed in their second course. These

Computer Science Education 149

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

students expressed an increased feeling of pride and accomplishment
when they completed their programming assignments individually
although they found pair programming less frustrating. They also
enjoyed the social aspects of pair programming and found it a good
way to meet their fellow students. Simon and Hanks (2008) speculate that
this formalized social relationship which breaks down isolation may be
a cause of the increased retention often reported as a result of pairing.

2.9. Impact on women

Although pair programming provides many benefits for students, there is
some evidence that it benefits women to a greater degree than men. This
suggests that pair programming may help to reduce some aspects of the
gender gap in computing.

As discussed by Margolis and Fisher (2002), female students in
programming courses are frequently less confident than men, even when
their actual level of competence is the same. This leads them to conclude
that they do not ‘‘belong’’ in computing, with the result that they leave at
higher rates than men. Because fewer women than men attempt
computing-related majors in the first place, this higher drop rate results
in a greater gender gap in computing degrees than would otherwise be the
case.

In the study of pair programming in CS1 conducted by Werner,
Hanks, and McDowell (2004), paired women were more likely than those
who worked alone to take the final exam (88.1% vs. 79.5%). Although a
greater percentage of paired women took the exam, the pass rates for
both groups were similar, leading to greater overall course success
for paired women. While the differences in completion and success rates
for paired and solo women were not statistically significant, Werner et al.
(2004) argues that more than 8% increase for paired women is of practical
significance.

Among the students who passed CS1 (with a grade of C or better),
Werner et al. (2004) found that a significantly higher percentage of
paired students attempted the second programming course: 76.7% of the
paired students took the second course, while only 62.2% of the unpaired
students did (n ¼ 237, w2(1) ¼ 6.17, p 5 0.05). Although pairing was
related to an 18% increase in attempt rates for both paired men and
women, this difference was significant for men (n ¼ 186, 88.0% vs.
69.4%, w2 (1) ¼ 7.60, p 5 0.01), but not for women (n ¼ 51, 73.8% vs.
55.6%, w2(1) ¼ 1.19, p ¼ 0.27). The authors suggest this lack of
significance may be due to the small number of women in the study.

For women who indicated on the first day of CS1 that they intended to
pursue a computing-related major, there was a greater likelihood that
they would have actually declared such a major 1 year later if they were

150 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

paired. For paired women, 55.5% were computing majors 1 year later,
compared with only 22.2% of the women who had worked alone
(w2(1) ¼ 4.14, p 5 0.05) (Werner et al., 2004).

In the area of confidence, Werner et al. (2004) also found that pair
programming had a significant impact. Paired women were more
confident than solo women (86.8 vs. 63.0, p 5 0.001), and paired men
were more confident than solo men (90.3 vs. 74.6, p 5 0.001). Moreover,
pair programming had a greater impact on the confidence of women than
that of men. Unpaired men indicated a confidence level 11.6 points higher
than unpaired women, but for paired students the difference in confidence
levels between women and men was only 3.5 points. This suggests that
pair programming ‘‘may have a visible, positive impact on the gender
gap’’ (Werner et al., 2004, p. 50).

Braught et al. (2011) asked students to indicate their level of
frustration while working on their laboratory assignments, using a 5-
point scale ranging from very high to very low. In the courses taught by
one of the two instructors, female students who worked alone were more
frustrated than those who worked in pairs (t(133) ¼ 2.28, p ¼ 0.024).
Solo females were also more frustrated than solo males ((t(133) ¼ 2.82,
p ¼ 0.006), but there was no difference in frustration between paired
females and paired males. No differences were found between the men
and women in the second instructor’s courses. The authors suggest that
pair programming may help reduce the amount of frustration experienced
by female programmers.

In his survey of CS1 students who paired, Hanks (2006) found that
female students (n ¼ 28) had more positive impressions of pair
programming than men (n ¼ 87). Women students indicated greater
agreement than men with all questions (‘‘I like pair programming,’’ ‘‘I
would like to pair program again in another class or in my job,’’ ‘‘I
learned more in this class because I pair programmed,’’ and ‘‘I had more
fun in this class because I pair programmed’’), although the differences
were not statistically significant.

Carver et al. (2007) measured the number of computer science majors
in CS1 who were still majors 1 year later, and found that two-thirds of the
female students who pair programmed were still majors 1 year later, while
only one-third of the females from the solo class were. Although
encouraging, this difference was not statistically significant due to the
small number of women in the study (nine in the paired class, six in the
solo class).

In a study that coupled pair programming with written reports,
VanDeGrift (2004) found that anonymous ratings of enjoyment, solution
confidence, learning of concepts, and debugging efficiency were nearly
equal between male and female pair programmers. However, women’s
impressions of the written reports as a means of increasing confidence,

Computer Science Education 151

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

technical understanding, and reflection were higher than men’s, although
no statistical significance for these results is presented.

3. Challenges

While the benefits of pair programming are notable, there are some
challenges. Students’ ability to schedule time to work with partners is
hindered by busy personal, school, and work lives. Partner compatibility
is an issue leading instructors to examine personality traits and
compatibility. Additionally, faculty members are concerned that students
will not learn to program individually.

3.1. Scheduling

One of the most significant challenges faced by students who pair appears
to be scheduling time to work together. Students are often busy and have
conflicting class schedules, and many of them also have work and family
obligations that make it difficult to find times to meet their partners.

Scheduling may be especially challenging when students do not live on
or near campus. Pair programmers in a large CS1 course at a primarily
commuter university reported that finding time to meet their partner
posed the biggest obstacle in the course (VanDeGrift, 2004). It should be
noted that unlike many introductory courses which use pair program-
ming, this course did not include a closed laboratory component.

Some of the students in the courses examined by Melnik and Maurer
(2002) found that work and other commitments interfered with their
ability to schedule pair programming sessions. This limited the number of
hours per week that they could work together, with the result that these
pairs were not as successful as those whose schedules were more flexible.

DeClue (2003) also reported scheduling as an issue for his students,
with students’ comments including ‘‘It was difficult to find time to get
together,’’ and ‘‘Finding time to meet out of class is always difficult.’’
Some pairs in Cao and Xu (2005) also had scheduling difficulties,
particularly because they were working on a complex project that
required them to meet frequently on their own time. Bevan, Werner and
McDowell (2002) found the scheduling difficulties were one of the most
common problems reported by paired students.

Scheduling problems were also frequently mentioned by the students
who were interviewed by Simon and Hanks (2008). These students, who
had experience in both paired and solo programming, expressed the view
that scheduling and working styles were sometimes negatively impacted
by pairing. The students commented favorably about the freedom of
setting their own schedules when solo programming. Some preferred to
start projects early and were discouraged from doing so when pairing.

152 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

Others, more prone to procrastination, found pairing more helpful from a
time management standpoint.

One way to avoid scheduling problems is to require pair programming
in closed labs only (where attendance is required). It appears that students
receive many of the benefits associated with pair programming even when
it is only used in closed labs (Braught et al., 2008; Carver et al., 2007;
Chaparro et al., 2005).

Interestingly, scheduling pair programming sessions is also seen as a
challenge in industry (Begel & Nagappan, 2008), because of time conflicts
and because it reduces employees’ choice of working hours.

3.2. Partner compatibility

One concern that educators may have with pair programming is that some
pairs will be incompatible, which will interfere with student learning and
lead to an increased workload for the teaching staff who need to address
the problems associated with these pairs (Jacobson & Schaefer, 2008).

In general, this concern appears to be unfounded as several studies
showed that the majority of students get along well with their partners.
Carver et al. (2007) used a 5-point scale to ask students to indicate how
well they got along with their partner. The mean response of 4.44 differed
significantly from the neutral response of 3, indicating that the students
overwhelmingly felt that they were compatible with their partners.

Hanks (2005) asked students who paired in their CS1 course to
indicate their level of agreement with the statement, ‘‘My partner and I
worked well together’’ using a 7-point Likert scale, where 1 indicated
‘‘strong disagreement’’ and 7 indicated ‘‘strong agreement’’. A significant
majority (66.5%) of the students’ responses were either 6 or 7. Only
14.7% of students expressed some level of disagreement with this
statement.

In a CS1 class at UC Irvine, students were allowed to choose their own
partners. Fewer than 5% of the pairs had compatibility problems, based
on reports made by either partner or by a teaching assistant (Jacobson &
Schaefer, 2008).

Bevan, Werner, and McDowell (2002) found that one of the most
common stresses reported by paired students was a significant experience
disparity between the partners. The more experienced students were
frequently impatient with their partners and several students described
having a less adept partner as a ‘‘waste of their time’’ and would write the
program alone. Although other students complained of incompatibilities,
fewer than 2% had issues that were serious enough that they eventually
re-paired. Overall, fewer than 5% of all students reported significant
scheduling or reliability conflicts. However, logs students kept revealed
some unreported conflicts.

Computer Science Education 153

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

In their observational study of student pairs, Cao and Xu (2005) noted
that pairs in which the partners had very different skill levels did not work
as effectively as pairs where the partners had similar skill levels. For
example, the low-skilled partner would simply agree with any approach
taken by the higher-skilled partner, and the higher-skilled partner would
tend to ignore suggestions made by the lower-skilled partner. In these
mismatched pairs, the highly competent partner did not like pair
programming, although the weaker partner did.

Sennett and Sherriff (2010) confirmed the findings of Katira et al.
(2004) and Williams, Layman, Osborne, and Katira (2006) that perceived
similarity, among partners, in skill level is a significant factor in predicting
team compatibility. In all three studies, students rated their compatibility
with various partners. They also rated partners on factors such as
similarity of skill level, work ethic, programming self-esteem, and time
management. Additionally, researchers considered personality type and
learning style factors, which they obtained by testing students at the start
of the semester. Katira et al. (2004) also found that actual skill level
contributed to compatibility in an object-oriented course, but not in CS1
or software engineering, and that partners with different personality types
were found to be compatible in CS1 but not in other courses considered.
The Williams’ study (2006), which seems to subsume the Katira et al.’s
(2004) study, did not find that personality type contributed to
compatibility, but did find that similar work ethic predicted compatibility
in a software engineering course.

Thomas et al. (2003) reported similar results. When students were
paired with other students self-reporting equal levels of confidence in
programming ability, they recount higher levels of enjoyment and believe
they produce better work. Overall, the most self-confident students like
pair programming less, especially when paired with students with lower
self confidence.

However, Thomas et al. (2003) found discrepancies when students self-
reported confidence levels. Students with similar backgrounds and
achievement placed themselves at different places on the confidence
scale. Grades for students in the most self-confident group were not
statistically significantly higher than the class as a whole.

Braught, MacCormick, and Wahls (2010) compared individual
programming performance of 259 students in 13 sections of CS1 between
2005 and 2008. Course performance was computed based on individual
work, including written homework exercises, weekly programming
assignments, three written exams, and two programming exams. The
weekly programming assignments were done differently in the 13 different
sections analyzed: in 7 sections students were paired by ability, in 2
sections they were paired randomly, and in 4 sections students worked
alone. Student ability, for the purpose of pairing, was measured as overall

154 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

course performance at the time pairs were created. Individual program-
ming performance was measured by grades earned on the programming
exams. Braught et al.’s (2010) results suggest that pairing students by
ability has a mild effect on individual programming ability and other
individual tasks (written homeworks and tests) for students in the lowest
ability quartile.

Watkins and Watkins (2009) used prior course performance to pair
students of similar ability. Initially, they used student performance on lab
exercises as their measure of ability, but switched to student exam scores
later in the course. They found that using lab performance resulted in
fewer student-reported problems with their partners.

Radermacher and Walia (2011) paired students based on their major,
and found that students in pairs composed of one computing major and
one non-computing major perceived pair programming to be less helpful
that students in pairs made up of either two computing majors or two
non-computing majors. They speculated that this may be due to perceived
ability differences between the partners, even though there were no actual
differences in the partners’ course performance.

Students who were interviewed by Chaparro et al. (2005) expressed the
opinion that partners should have similar skill levels. They also suggested
that it is not a good idea to pair two novices, because they felt that if
neither partner knows what to do they will both struggle and get stuck.
This seemingly contradicts the evidence that pair programming is
particularly useful for novices, given its success in many introductory
programming courses. However, the subjects in this study were post-
graduate students, and it is possible that their greater experience
influenced their judgment in this area.

The students in Chaparro et al.’s (2005) study also suggested that there
should not be a wide disparity in skill level between the two partners. This
suggestion was supported by the researchers’ observations, in which they
noted situations where a skilled student would often take full control of
the task with little input from a less skilled, passive partner.

DeClue (2003) reports a similar finding, where students sometimes
reported that they felt that working with a less skilled partner slowed
them down, or that working with someone more skilled made them feel
inferior. Kuppuswami and Vivekanandan (2004) also report that students
prefer working with someone with the same or higher level of academic
performance.

Although the evidence suggests that most pairs are compatible and that
it is important to pair students by ability, there is a paucity of research that
examines the impact of minority status on partner compatibility. Katira,
Williams, and Osborne (2005) report that minority students are likely to be
compatible with their partner, but that pairs in which both students are
minorities are more likely to perceive compatibility. Based on their

Computer Science Education 155

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

interviews of 11 African American students, Williams, Layman, Slaten,
Berenson, and Seaman (2007) postulate that pair programming appeals to
these students due to its collaborative nature. Although these studies
suggest that minority status may have an impact on partner compatibility,
much more investigation is needed in this area.

3.3. Personality and pairing

Although most pairs have compatible partners, one concern has been the
influence of personality on pair compatibility. Some researchers have
examined the potential impact of personality traits on pair compatibility
and performance.

Choi, Deek, and Im (2008) studied 128 students with no prior
programming experience. They created pairs by matching them in
different ways based upon each students’ Myers-Briggs Type Indicator
(MBTI). The MBTI assesses an individual’s personality traits based on
four scales: sensing/intuitive, thinking/feeling, extraversion/introversion,
and judging/perceiving. According to the MBTI model, people have a
dominant preference, which will be either their sensing/intuitive or
thinking/feeling component. Their auxiliary (or secondary) preference
will be the second of these two components. They created pairs whose
members were: (1) alike in both their dominant and auxiliary preferences,
or (2) opposite in both preferences, or (3) diverse, in that they were alike
in one preference but different in the other. As part of the pairing process,
students with similar grades were paired in an attempt to control for
differing aptitudes.

In their study, pairs worked on two short programming exercises for
up to 45 min each. Their solutions were marked on a 10-point scale,
which Choi et al. (2008) define as a measure of productivity. There was a
significant difference in productivity levels between the three groups;
specifically, the pairs made up of students with diverse MBTI traits were
more productive than pairs with students who had matched traits. Choi
et al. (2008) suggest that this result is due to the diverse pairs’ makeup
because their common personality trait makes them compatible, but their
opposite trait provides a greater perspective to examine more problem
solving approaches.

Carver et al. (2007) also used the MBTI to assign partners. In their
study, some partners were assigned so that the pairs would have similar
personality types, while others were assigned to have different types. They
found that the personality types of the pairs had no impact on their study
results.

Chao and Atli (2006) identified the most important personality traits
for successful pair programming by surveying university students and
professional programmers. They found that open-mindedness and

156 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

creativity were the most desirable traits for partners, although attentive-
ness, logical ability, and responsibility were also important.

Fifty-eight students were given a personality trait test and assigned to
pairs, based on their open-minded, attentive, logical, and responsible
personality traits. Chao and Atli (2006) maximized the variation of the
pairs by matching for high/high, high/low, and low/low levels on each
personality trait. The pairs were given a programming task, which was
evaluated for the quality of the resulting code, specifically correctness of
output, documentation, style, correct object usage, and the user interface.
They found no evidence that matching pairs on personality traits made a
difference in the quality of the code produced. They also found no
correlation between personality traits and compatibility or enjoyment as
reported by the participants.

Salleh, Mendes, Grundy, and Burch (2009) also investigated the role of
personality in successful pair programming. In their study, students’
personality characteristics were determined using the five-factor model,
which is based on five broad personality traits: openness to experience,
conscientiousness, extraversion, agreeableness, and neuroticism. They
formed pairs with both similar and mixed levels of conscientiousness. The
pairs completed short (about 75 min) laboratory exercises.

There was no evidence that personality traits affected student
academic performance. There were no significant differences in assign-
ment or test scores between students who were in mixed or same
personality pairs. Based on survey results, they also found that
personality had no impact on student satisfaction or confidence. Students
in both types of pairs were highly confident (87.9% of students reported
that they were highly confident in their solutions to the programming
assignments), and 92.6% of them enjoyed working with their partner.

Taken together, these studies suggest that the personality traits of the
individual partners in a pair may impact that pair’s compatibility and
performance, but it appears that this effect may be small. However, as
noted by Salleh, Mendes, and Grundy (2011), these results may be
partially attributed to the variety of instruments used to measure
personality.

3.4. Transition to solo programming

Although there is substantial empirical evidence to the contrary (as
discussed in Section 2.2), some faculty members have expressed concern
that students who pair program in their first course would not be able to
program individually in later courses. Jacobson and Schaefer (2008) had
to overcome this objection from colleagues at their institution, but found
that ‘‘pair programming did not interfere with a student’s capability to
program individually’’ in later courses. They recommend that students in

Computer Science Education 157

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

the later courses be given clear instructions about appropriate and
inappropriate collaboration.

Students at two institutions who were interviewed about the transition
from paired to solo programming (Simon & Hanks, 2008) indicated that
pair programming helped them learn to program and gave them a good
foundation for when they had to program without a partner. As stated by
one of the students, ‘‘Programming in pairs helped me a lot, so when it came
time to program by myself, I was ready’’ (Simon & Hanks, 2008, p. 23).

4. Practical matters

Research suggests that pair programming is a successful technique that
provides pedagogical and social benefits for students. But, how does one
go about using pair programming so that students can enjoy these
benefits without overloading the teaching staff? Specifically, how do you
teach the students how to pair? How do you assign partners so that the
pairs will be successful? And, how do you assess students individually if
they are working collaboratively? Three papers that specifically address
these questions are Bevan et al. (2002), Jacobson and Schaefer (2008), and
Williams, McCrickard, Layman, & Hussein (2008).

Based on 7 years of experience with more than 1000 students, Williams
et al. (2008) outline guidelines for implementing pair programming in the
classroom. They contend that:

. Students need training in order to successfully pair. In particular,
freshman and sophomores should not be paired unless there is
supervised lab time available.

. Teachers should check in with pairs to make sure they are working
effectively together and to address questions as they arise during the
lab exercises. However, pairs should be encouraged to find answers
independently as much as possible.

. Attendance should be required and penalties for tardiness should be
applied to protect one partner from another who is less diligent.

. Similarly, instructors should ask students for feedback about their
partners and take prompt action when one partner is not performing
equitably. This is particularly important when students are paired
outside of a closed laboratory.

. By the same token, students must report problems with their
partners immediately so the instructor can intervene.

. Students should be evaluated on both paired and individual work.

. Instructors should make every attempt to assign compatible
partners. Williams et al. (2008) noted that students prefer to work
with a partner of equal or better skill level and dysfunctional pairs
occurred when there were very different work ethics and/or skill

158 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

levels. In addition, students should be assigned to different partners
throughout the term.

. Environmental factors are important. Pairs should be able to sit
comfortably next to each other as they work with both partners
having easy access to the screen, keyboard, and mouse.

. Finally, the pair should be working together on the same problem.

Williams et al. (2008) created a peer evaluation system, PairEval1,
which instructors can use to observe rating trends for each student. Their
pair programming training video2 is also available for students and
instructors.

Bevan et al. (2002) additionally suggested instituting a coding standard
as novice programmers tend to believe that their style is the ‘‘right’’ style.
By enforcing an instructor-defined coding standard, arguments about
trivial issues are minimized.

4.1. Partner assignment and rotation

There are various mechanisms for assigning partners, many addressing
issues related to compatibility. There is also the issue of whether partner
assignments should be maintained for the duration of a course or changed
regularly, and if so, how frequently.

Many instructors allow students to self-select their partners. This may
be the simplest technique for large courses, or for situations where pairing
is used only in closed labs. In the pair programming study conducted by
Chaparro et al. (2005), students paired in closed labs only and selected
their own partners for each of the three paired labs.

McDowell et al. (2003) asked students to list up to three potential
partners with whom they would like to be paired. Nearly every student
was assigned to a partner on his or her list. Students who did not list any
potential partners were given one randomly. Students worked with the
same partner for the duration of the course (10 weeks), although a few
students had to be given new partners due to course drops or schedule
changes.

As discussed in Section 3.2, most pairs are compatible, but it is better if
the partners have similar skill levels. To help facilitate these types of pai-
rings, some instructors wait for a few weeks to allow students to get to know
each other better, so that they can choose a compatible partner (Jacobson &
Schaefer, 2008). As Jacobson and Schaefer (2008) note, ‘‘students tend to
seek out partners who they perceive have a skill level at least as high as their
own, and with whom they believe they can work’’ (p. 95).

In other institutions, students switch partners at various times during
the term. Williams et al. (2008) discuss pair rotation as one of their
guidelines, as it allows students to meet more of their peers, and it

Computer Science Education 159

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

prevents students from getting stuck with an underperformer or non-
contributor for an entire term. They also argue that it is beneficial for the
teaching staff because a more diverse set of peer evaluations provides a
more accurate assessment of each student’s work.

Srikanth, Williams, Wiebe, Miller, and Balik (2004) surveyed students
by asking, ‘‘Do you think it was a good idea to change partners after each
assignment?’’ Of 270 CS1 students, 197 (73%) agreed that pair rotation
was a good idea; 16 out of 17 (94%) software engineering students also
agreed. Students reported that pair rotation gave exposure to more
classmates and allowed them to have a new partner when there were
partner incompatibilities. But when they had a highly compatible partner,
pair rotation led to the potential for a less compatible partner. They also
found inefficiencies as they had to adapt to a new partner.

Student pairs in DeClue’s (2003) study worked on a 6-week project
broken into three 2-week phases. Students traded partners after each
phase, with one partner continuing on the project and one transferring to
a different project, forcing them to work on unfamiliar code. Declue’s
students reported that this trading process made them appreciate the
value of good code design and documentation, which is something that
many students tend to disregard otherwise.

Although Carver et al. (2007) initially assigned partners based on their
Myers-Briggs personality type, they only did this because they did not
have any information about their students’ technical competency. When
they reassigned partners later in the course, they did it based on student
performance to that point, because they felt that the literature showed
that this would produce the most compatible pairs.

VanDeGrift (2004) also altered the criteria for assigning pairs as the
term progressed: using random pairings for the first assignment,
comparable skill level on the second, and comparable effort level on the
third, although how these levels are assessed is not described in the paper.

It seems clear that switching partners provides some benefits for students
as partners can be assigned based on skill, students avoid being stuck with
an incompatible or mismatched partner, and students get exposed to more
classmates and differing working styles. These benefits must be weighed
against downsides such as increased work for the instructor and issues
related to scheduling – just as students work out a schedule with one
partner, they have to switch to work with another. Of course, this is not an
issue in situations where pair programming is only used in closed labs.

4.2. Teaching students to pair

Many different approaches have been taken to teach students how to pair,
including assigned readings, lectures, and practice lab sessions. Bevan
et al. (2002) recommend introductory activities such as the ones described

160 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

in this section, and also suggests candidly addressing scheduling
compatibility and student concerns about working with a partner.

Students in the pairing sections of McDowell et al. (2003) were given a
15–20 min description of pair programming. They were also asked to read
Willams and Kessler’s ‘‘Kindergarten’’ paper (2000). To encourage them to
read the paper, students were told that the first quiz might include a question
about it. Students in VanDeGrift’s (2004) study also read the ‘‘Kindergar-
ten’’ paper, and the course instructors gave a pair programming
demonstration, followed by a debriefing of the navigator and driver roles.

To prepare students for pair programming, Declue (2003) spent a
portion of one lecture describing it and discussing its purpose.
Additionally, ‘‘one 100 minute lab period was devoted to practicing pair
programming’’ (DeClue, 2003, p. 50), and further guidance was provided
with laboratory instructions.

Kuppuswami and Vivekanandan (2004) gave students in the paired
groups a 1-hour lecture about pair programming, in which they were taught
about the roles. They also practiced pair programming in one laboratory
session before the experiment was conducted. Chaparro et al. (2005) gave
students a brief explanation of pair programming, which focused on the
characteristics of good collaboration and the driver/navigator roles.

Although the amount of training conducted in these studies tended to
be quite small, pair programming had a positive impact on various aspects
of student performance and learning. On the other hand, paired students
in the study conducted by Somervell (2006) did not benefit from pairing.
These students were not provided with any background or training.
Instead, ‘‘Students were left alone in defining roles and how each student
would perform in these roles’’ (Somervell, 2006, p. 307). As Somervell
acknowledges, perhaps students need to receive some instruction in how to
pair in order for it to be beneficial to them. This observation is echoed by
Williams and Kessler (2001, p. 19), who note that, ‘‘It is very important to
provide the students some class/lab time to work with their partner,’’ as
this allows the partners to bond, and gives instructors and lab assistants an
opportunity to observe and train the students as they pair.

Williams et al. (2008) note in their guidelines for successful pairing that
it is necessary to explicitly train students to pair and that this is best done
in a supervised lab setting. They provide a 15-min training video to help
students understand the driver and navigator roles, the need to switch
roles and the need to be actively participating at all times. The lab
instructor closely observes the pairs, intervening as necessary to make
sure the partners share the work and the roles appropriately. They state,
‘‘We strongly advise against pairing first or second year undergraduate
students if no pair programming will occur in a closed lab or classroom
setting that is monitored by a member of the teaching staff’’ (Williams
et al., 2008, p. 447). They observe that starting out as pairs in a structured

Computer Science Education 161

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

environment will encourage students to feel more comfortable when
meeting together outside of class.

Even with training, it is sometimes necessary to remind students to
switch roles (Jacobson & Schaefer, 2008). In closed labs, this can be done
by the instructor or teaching assistant at regular intervals. This helps
students to learn how to pair, and gives both partners an opportunity to
drive. It may also help avoid other pairing problems, such as those
discovered by Bevan et al. (2002). From written student logs and teaching
assistant observations, Bevan et al. discovered that some pairs used a
‘‘divide and conquer’’ approach, while others alternated development by
emailing the latest version back and forth. Some partners did not want to
drive at all. Moreover, a willingness to submit work with both partner’s
names, even if one partner had not contributed, was uncovered.

Although it is important to teach students how to pair, instructors
should not be overly concerned when students do not rigorously follow
the driver and navigator roles discussed in much of the literature. Early
descriptions of pair programming emphasized the differences between the
two roles, and argued that the navigator operated at a higher level of
abstraction than the driver. Recent observational studies have shown that
the roles are much less distinct. For example, Bryant, Romero, and du
Boulay (2008) observed pairs of professional programmers and found
that there were no significant differences between the two partners in
terms of the types of statements they made or the level of abstraction they
engaged in. They suggest that pair programming may in fact be more of a
‘‘tag team’’ approach to software development, in which the two partners
share the cognitive load of software development.

Chaparro et al. (2005) made similar observations when studying
student pair programmers. They noted that it was often difficult for them
to determine which student was playing which role, and observed
situations in which one student was controlling the keyboard while the
other was controlling the mouse. They also observed other types of role
behaviors, such as ‘‘teacher-learner’’ or ‘‘thinker-doer.’’

Chong and Hurlbutt (2007) also found no distinct division of labor
between the two partners, and referred to the ‘‘driver/navigator myth’’ (p.
357). In the pairs they observed, both partners contributed to discussions
equally and frequently switched control of the keyboard and mouse. They
suggest that emphasizing the driver and navigator roles when teaching
pair programming ‘‘may actually run counter to the ways that pairs work
most naturally and effectively’’ (Chong & Hurlbutt, 2007, p. 354).

4.3. Assessing individual contributions

Clearly, educators want their students to know the course material when
the course is over. Some educators may be concerned that students who

162 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

pair program may not gain the essential knowledge, or that it will be
difficult to assess individual learning in a paired environment. Many
different techniques have been used to assess individual student’s learning.
These include individual lab exams, survey instruments, quiz questions
about the students’ shared work, written reports, and interviews.

Preston (2006) makes some recommendations (based on collaborative
learning research) for implementing pair programming. He argues that
individual accountability is critical to ensure that every student learns the
material that is intended to be taught through a collaborative activity.
Preston (2006) makes two recommendations to encourage individual
accountability with pair programming (p. 19):

(1) Tests should require students to develop code, to interpret code, or
both.

(2) Test scores for individuals should be more heavily weighted than
joint project scores when determining the final grade.

Preston argues that these two recommendations will encourage students
to stay actively involved while working with their partners, and to become
more concerned with individual learning because they know they will be
assessed on their understanding.

For example, the students in the CS1 course described by Jacobson
and Schaefer (2008) worked in pairs on lab exercises, but took individual
lab exams to assess their learning. Similarly, students in the CS1 courses
studied by McDowell et al. (2006) were assessed individually using exams,
which specifically tested the students’ ability to write code.

Williams et al. (2008) note in their guidelines for successful pairing that
students should be assessed using both individual and paired work, as this
helps prevent over-reliance on one partner. In their view, the percentage
of the course grade based on collaborative work should vary from course
to course, based on the type of course. For example, in their CS1 course,
only 10% of the grade is based on paired work, while in a software
engineering course, a much greater proportion of the grade is allocated to
group work.

Students can also assess their partner’s work. For each of their
programming assignments, students at one of the institutions studied by
Simon and Hanks (2008) filled out forms indicating the amount of time
they spent in the driver and navigator roles as well as the amount of
time they spent working alone. They also assessed the contribution
made to the program by their partner. DeClue (2003) asked students to
indicate the percentage of work that was contributed by each partner at
the end of every 2-week phase in their projects. He potentially adjusted
students’ individual grades based on their responses to this question.
DeClue (2003) also included questions on quizzes that were directly

Computer Science Education 163

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

related to the projects, such as ‘‘What is the name of the class which
contains your hash method?’’.

Some instructors use pair programming in closed labs only, where the
pairs can be easily supervised (e.g. Carver et al., 2007; Chaparro et al.,
2005). All other work, including larger programming assignments, is done
by students working alone. This approach attempts to ensure that
students are able to program, and do not simply get a ‘‘free ride’’ from
their partners. However, as found by Simon and Hanks (2008), it is
somewhat naı̈ve to assume that students are not getting help from others,
even when they have specifically been told to work alone.

VanDeGrift (2004) combined pair programming projects with individual
written reports. The reports served as a mechanism for accountability in a
CS1 class with more than 500 students which did not include a closed
laboratory component. The reports, which were weighted equally with the
three projects, required students to reflect individually on the project
purpose, user interface, design process, system internals, test cases, and what
they learned. A survey given at the end of the term revealed that while
students valued the chance to explain their projects, they felt the reports
were too time consuming and seemed like ‘‘busy’’ work. But, the written
reports appeared to reduce the concern that lazy partners were earning
‘‘free’’ grades as fewer than 5% of students reported this as a problem.

Cliburn (2003) used peer evaluations in which students emailed the
instructor the percentage of effort contributed by each partner to the
project (e.g. ‘‘John 50%, Mary 50%’’). Lower grades were assigned to
students whose partners reported that they did not contribute equally to
the project. This seemed to eliminate complaints about students who were
regarded as ‘‘parasites’’ for relying on their partners to do all the work.

Students in the courses described by Williams et al. (2008) used the
PairEval tool to rate their partner after they turned in each programming
assignment. PairEval allows students to choose a word, such as
‘‘Excellent,’’ ‘‘Satisfactory,’’ or ‘‘Deficient,’’ to describe their partner’s
contribution on an assignment. Based on the rating, a student’s grade can
be adjusted to reflect their level of participation.

Another technique that can be used to alleviate concerns that one
partner might not be contributing his or her share of the work is to have
the students individually explain their code. For example, 10% of the
grade on programming assignments for students at one of the institutions
studied by Simon and Hanks (2008) was based on their ability to describe
their work in individual interviews.

4.4. Physical setup

Pair programming is typically done by having the partners share a single
workstation. However, many variations of this configuration have been
used with success.

164 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

Students in Müller and Tichy’s (2001) extreme programming course
tended to use two adjacent computers while pair programming. They
used one of the displays for program development and the second
for accessing Java documentation on the internet. Three-quarters of
the students felt that having two displays was better than having only
one.

Few authors have described their physical lab settings in detail.
However, Williams et al. (2008) describes several alternatives. In their
view, a traditional lab environment is acceptable if there is enough room
to allow students to switch roles without switching chairs. A less
satisfactory arrangement, when no suitable lab environment is available,
is to have pairs of students with laptop computers move desks to allow
them to sit next to each other. Williams et al. (2008) also describe the
ideal lab environment as one in which every computer has two
monitors, mice, and keyboards, thus making it very easy for students
to pair.

One potential downside of using pair programming is the collocation
requirement, as both partners must find a common time and place to
meet. This can be challenging for students who live far from campus.
Extending the pair programming model to allow the partners to virtually
meet from separate locations mitigates this issue, making it possible for
more students to pair.

An early study of distributed pair programming was conducted by
Baheti, Gehringer, and Stotts (2002). They studied a graduate-level
object-oriented programming course in which students worked on team
projects. Students in 21 teams used pair programming; 5 of these teams
used distributed pairing, in which the partners used a screen-sharing tool
to allow them to virtually pair from separate locations. They found no
differences between the collocated and distributed teams in terms of
productivity or software quality. They concluded that, ‘‘Distributed pair
programming in virtual teams is a feasible way of developing object-
oriented software’’ (Baheti et al., 2002, p. 219).

Hanks (2008a) developed and empirically evaluated a tool specifically
designed to support distributed pairing. This tool provided a second
cursor to allow both partners to gesture effectively. In his study, paired
students in three sections of a CS1 course were randomly assigned to two
groups. The students in the first group of pairs had to physically meet to
work on their programming assignments, while the students in the second
group were allowed to use the distributed pairing tool to virtually pair
from separate locations.

Students in both groups performed equivalently in the class, in terms
of grades on programming assignments and the final exam. There was
some evidence that the students who were allowed to pair from separate
locations spent a smaller proportion of their time working alone, thus
potentially accruing more of the benefits associated with pair

Computer Science Education 165

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

programming. Together, the Baheti et al.’s (2002) and Hanks, (2008a)
studies indicate that distributed pairing can work in educational settings.

5. Concluding remarks

Pair programming has been used in the classroom for nearly 10 years, and
its application in educational settings thus far indicates pair programming
offers a range of benefits for students with minimal challenges. However,
the evidence of actual improvements in learning by students (as measured
objectively and individually) is scarce. As Salleh et al. (2011) note in their
systematic literature review, there is evidence that pair programming is
effective in the classroom, but much more research is needed. There are
no widespread studies, multi-institutional studies or longitudinal studies,
and very few replicated studies. Little is also understood about how best
to teach students to pair program.

The majority of the research into the educational application of pair
programming has focused on measurable benefits such as course success,
retention, program quality, confidence, and enjoyment. Appropriately,
that work has assessed pair programming using quantitative research
methods evaluating various-sized groups of subjects assigned to ‘‘con-
trol’’ and ‘‘experimental’’ groups. These studies have shown pair
programming to be generally beneficial for university level students,
particularly in introductory courses, although results attributable to pair
programming have ranged from no impact to large statistically significant
improvements. Further research in these areas is needed to better
characterize the situations in which pair programming leads to improved
student performance.

In considering the benefits of pair programming, several important
groups have largely been neglected or only considered as an afterthought.
These groups include women, ethnic minorities, and pre-college students.
Some questions to consider are:

. Is pair programming beneficial for women or minority students? If
so, in what ways and why?

. What impacts might pair programming have in K-12 education? Is it
workable beyond the classroom lab in non-adult settings?

Another area of research includes studies that focus on how to
effectively implement pair programming. Many have found that
collaboration strategies other than the strict driver-navigator scenario
work best in some settings. Also, looking beyond collaboration strategies,
researchers have studied how best to assign partners, how to assess
individual knowledge and contributions, and how best to teach students
to pair. Some questions to consider are:

166 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

. Are there particular benefits to strictly defined roles? If so, is there a
best pair-role scenario? Or might less strictly defined pair strategies
be equally as effective? What impact does frequency of role
switching play?

. It appears that pairing students by actual or perceived ability level
leads to improved partner compatibility. Is this true in general?
What factors influence this? Should students be paired by ability
level?

. Personality seems to have little impact on pair compatibility, but as
Salleh et al. (2011) argue, these results may be attributable to the
instruments used to measure personality. They suggest that more
research is needed in this area.

. Can pair programming in computer labs be informed by pair work
in chemistry and physics labs?

Attitude plays an important role in so many aspects of life; one expects
it plays an important role in learning as well. In regards to pair
programming:

. What role does attitude play? Can a statistically significant
correlation between attitude and performance be found?

. Why do some students strongly resist collaboration? Do these
students share certain characteristics? Is it acceptable or even better
for these students to work alone? And if so, how can pairs and
individuals working alone be managed?

. Can bad performance results for the Warrior/Phobe or major/non-
major pairing be replicated and/or explained?

Only one study considered pair programming in a distance education
setting. In light of the continued growth and ever-evolving need for
distance education, further study of pair programming in these settings is
needed. Tools and techniques to aid pair programming for distance
education need to be expanded and evaluated.

The research that seems most lacking includes studies designed to shed
light on how and why pair programming works or does not work. One
obvious reason is that these are typically smaller, qualitative studies, and
CS educators are naturally more comfortable with quantitative research.
To understand the hows and whys of pair programming will require
educators to borrow from and draw relationships to other disciplines such
as educational psychology, mathematics and science education, and
research on expertise. This type of research will allow for richer questions
such as what types of discourse do pairs engage in, how is the cognitive
load shared between partners, or how does the act of explaining one’s
reasoning to a peer facilitate learning. These issues appear to be relevant

Computer Science Education 167

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

to the effective use of pair programming in the classroom. Some of these
issues are investigated in Murphy, Fitzgerald, Hanks, and McCauley
(2010), but these results are only preliminary and should lead to further
investigation.

As in all areas of teaching and learning, research results provide data
which fuels innovation. The research into pair programming is encoura-
ging; however, replication is necessary to verify findings. Research into
additional questions, such as those listed in this section, is encouraged.

Notes

1. See http://agile.csc.ncsu.edu/pairlearning/paireval.php for more information.
2. Available at http://agile.csc.ncsu.edu/pairlearning/educators.php#ppvideo.

References

Ackerman, A.F., Buchwald, L.S., & Lewski, F.H. (1989). Software inspections: An
effective verification process. IEEE Software, 6(3), 31–36.

Baheti, P., Gehringer, E., & Stotts, D. (2002). Exploring the efficacy of distributed pair
programming. In Extreme programming and Agile methods - XP/Agile Universe 2002,
no. 2418 in LNCS (pp. 208–220). Berlin/Heidelberg: Springer.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.
Psychological Review, 84, 191–215.

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA: Addison-
Wesley.

Begel, A., & Nagappan, N. (2008). Pair programming: What’s in it for me? In ESEM ’08:
Proceedings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement (pp. 120–128). Kaiserslautern, Germany: ACM.

Bennedsen, J., & Caspersen, M.E. (2007). Failure rates in introductory programming.
SIGCSE Bulletin, 39, 32–36.

Bevan, J., Werner, L., & McDowell, C. (2002). Guidelines for the use of pair
programming in a freshman programming class. In Proceedings of the 15th conference
on software engineering education and training, February 25–27 (pp. 100–108).
Washington, DC: IEEE Computer Society.

Bipp, T., Lepper, A., & Schmedding, D. (2008). Pair programming in software
development teams – An empirical study of its benefits. Information and Software
Technology, 50, 231–240.

Braught, G., Eby, L.M., &Wahls, T. (2008). The effects of pair-programming on individual
programming skill. In SIGCSE ’08: Proceedings of the 39th SIGCSE technical
symposium on computer science education (pp. 200–204). New York, NY: ACM.

Braught, G., MacCormick, J., & Wahls, T. (2010). The benefits of pairing by ability. In
SIGCSE ’10: Proceedings of the 41st ACM technical symposium on computer science
education (pp. 249–253). Milwaukee, WI: ACM.

Braught, G., Wahls, T., & Eby, M. (2011). The case for pair programming in the computer
science classroom. ACM Transactions on Computing Education, 11(1), 2:1–2:21.

Bryant, S., Romero, P., & du Boulay, B. (2008). Pair programming and the mysterious role
of the navigator. International Journal of Human–Computer Studies, 66, 519–529.

Cantwell Wilson, B. (2002). A study of factors promoting success in computer science
including gender differences. Computer Science Education, 12(1/2), 141.

Cao, L., & Xu, P. (2005). Activity patterns of pair programming. In HICSS ’05:
Proceedings of the 38th annual Hawaii international conference on system
sciences (HICSS’05) - Track 3 (pp. 88a). Los Alamitos, CA: IEEE Computer
Society.

168 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

http://agile.csc.ncsu.edu/pairlearning/paireval.php
http://agile.csc.ncsu.edu/pairlearning/educators.php#ppvideo

Carver, J.C., Henderson, L., He, L., Hodges, J., & Reese, D. (2007). Increased
retention of early computer science and software engineering students using pair
programming. In CSEET ’07: Proceedings of the 20th conference on software
engineering education & training (pp. 115–122). Washington, DC: IEEE Computer
Society.

Chao, J., & Atli, G. (2006). Critical personality traits in successful pair programming. In
AGILE ’06: Proceedings of the conference on AGILE 2006 (pp. 89–93). Washington,
DC: IEEE Computer Society.

Chaparro, E.A., Yuksel, A., Romero, P., & Bryant, S. (2005). Factors affecting the
perceived effectiveness of pair programming in higher education. In Proceedings of the
17th workshop of the Psychology of Programming Interest Group (pp. 5–18). Retrieved
from http://www.ppig.org/workshops/17th-programme.html

Choi, K.S., Deek, F.P., & Im, I. (2008). Exploring the underlying aspects of pair
programming: The impact of personality. Information and Software Technology, 50,
1114–1126.

Chong, J., & Hurlbutt, T. (2007). The social dynamics of pair programming. In ICSE ’07:
Proceedings of the 29th international conference on software engineering (pp. 354–363).
Washington, DC: IEEE Computer Society.

Cliburn, D.C. (2003). Experiences with pair programming at a small college. Journal of
Computing in Small Colleges, 19(1), 20–29.

DeClue, T.H. (2003). Pair programming and pair trading: Effects on learning and
motivation in a CS2 course. Journal of Computing in Small Colleges, 18, 49–56.

Hanks, B. (2005). Empirical studies of distributed pair programming. Doctoral
dissertation, University of California, Santa Cruz.

Hanks, B. (2006). Student attitudes toward pair programming. In Proceedings of the 11th
annual conference on innovation and technology in computer science education (ITiCSE
2006), June 26–28 (pp. 113–117). New York, NY: ACM.

Hanks, B. (2008a). Empirical evaluation of distributed pair programming. International
Journal of Human–Computer Studies, 66, 530–544.

Hanks, B. (2008b). Problems encountered by novice pair programmers. Journal on
Educational Resources in Computing, 7, 1–13.

Hanks, B., McDowell, C., Draper, D., & Krnjajic, M. (2004). Program quality with pair
programming in CS1. In ITiCSE ’04: Proceedings of the 9th annual SIGCSE
conference on innovation and technology in computer science education (pp. 176–180).
New York, NY: ACM.

Jacobson, N., & Schaefer, S.K. (2008). Pair programming in CS1: Overcoming objections
to its adoption. SIGCSE Bulletin, 40, 93–96.

Jensen, R.W. (2003). A pair programming experience. CrossTalk, The Journal of Defense
Software Engineering. Retrieved from www.crosstalkonline.org/storage/issue-archives/
2003/200303/200303-Jensen.pdf

Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., & Gehringer, E. (2004). On
understanding compatibility of student pair programmers. In Proceedings of the
thirty-fifth SIGCSE technical symposium on computer science education (pp. 7–11).
New York, NY: ACM.

Katira, N., Williams, L., & Osborne, J. (2005). Towards increasing the compatibility of
student pair programmers. In Proceedings of the 27th international conference on
software engineering (pp. 625–626). Washington, DC: IEEE Computer Society.

Kuppuswami, S., &Vivekanandan, K. (2004). The effects of pair programming on learning
efficiency in short programming assignments. Informatics in Education, 3, 251–266.

Margolis, J., & Fisher, A. (2002). Unlocking the clubhouse: Women in computing.
Cambridge, MA: MIT Press.

McCabe, T. (1976). A complexity measure. IEEE Transactions on Software Engineering,
SE-2, 308–320.

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2003). The impact of pair
programming on student performance, perception and persistence. In Proceedings of
the international conference on software engineering (ICSE 2003), May 3–10 (pp. 602–
607). Washington, DC: IEEE Computer Society.

Computer Science Education 169

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

http://www.ppig.org/workshops/17th-programme.html
www.crosstalkonline.org/storage/issue-archives/2003/200303/200303-Jensen.pdf
www.crosstalkonline.org/storage/issue-archives/2003/200303/200303-Jensen.pdf

McDowell, C., Werner, L., Bullock, H.E., & Fernald, J. (2006). Pair programming
improves student retention, confidence, and program quality. Communications of the
ACM, 49, 90–95.

Melnik, G., & Maurer, F. (2002). Perceptions of agile practices: A student survey. In
Extreme programming and agile methods – XP/Agile Universe 2002 (pp. 241–250). No.
2418 in LNCS. Berlin/Heidelberg: Springer.

Mendes, E., Al-Fakhri, L., & Luxton-Reilly, A. (2006). A replicated experiment of
pair-programming in a 2nd-year software development and design computer
science course. In Proceedings of the 11th annual conference on innovation and
technology in computer science education (ITiCSE 2006), June 26–28 (pp. 113–117).
New York, NY: ACM.

Mendes, E., Al-Fakhri, L.B., & Luxton-Reilly, A. (2005). Investigating pair-program-
ming in a 2nd-year software development and design computer science course. In
ITiCSE ’05: Proceedings of the 10th annual SIGCSE conference on innovation and
technology in computer science education (pp. 296–300). New York, NY: ACM.

Müller, M.M., & Tichy, W.F. (2001). Case study: Extreme programming in a university
environment. In Proceedings of the 23rd international conference on software
engineering (pp. 537–544). New York, NY: ACM.

Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010). Pair debugging: A
transactive discourse analysis. In ICER ’10: Proceedings of the sixth international
workshop on computing education research (pp. 51–58). Denmark: Aarhus.

Nagappan, N., Williams, L., Wiebe, E., Miller, C., Balik, S., Ferzli, M., et al. (2003).
Pair learning: With an eye toward future success. In Extreme programming and
agile methods – XP/Agile Universe 2003 (pp. 185–198). No. 2753 in LNCS. Berlin/
Heidelberg: Springer.

Nosek, J.T. (1998). The case for collaborative programming. Communications of the
ACM, 41, 105–108.

Phongpaibul, M., & Boehm, B. (2006). An empirical comparison between pair
development and software inspection in Thailand. In ISESE ’06: Proceedings of
the 2006 ACM/IEEE international symposium on empirical software engineering
(pp. 85–94). New York, NY: ACM.

Preston, D. (2006). Using collaborative learning research to enhance pair programming
pedagogy. SIGITE Newsletter, 3(1), 16–21.

Radermacher, A., & Walia, G. (2011). Investigating the effective implementation of pair
programming: An empirical investigation. In SIGCSE ’11: Proceedings of the 42nd
ACM technical symposium on computer science education (pp. 655–660). Dallas,
Texas: ACM.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and mental models
in learning to program. In ITiCSE ’04: Proceedings of the 9th annual SIGCSE
conference on innovation and technology in computer science education (pp. 171–175).
New York, NY: ACM.

Salleh, N., Mendes, E., Grundy, J., & Burch, G.S.J. (2009). An empirical study of
the effects of personality in pair programming using the five-factor model. In ESEM
’09: Proceedings of the 2009 3rd international symposium on empirical software
engineering and measurement (pp. 214–225). Washington, DC: IEEE Computer
Society.

Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical studies of pair programming
for CS/SE teaching in higher education: A systematic literature review. IEEE
Transactions on Software Engineering, PP(99), 1.

Sennett, J., & Sherriff, M. (2010). Compatibility of partnered students in computer
science education. In SIGCSE ’10: Proceedings of the 41st ACM technical
symposium on computer science education (pp. 244–248). Milwaukee, WI: ACM.

Simon, B., & Hanks, B. (2008). First-year students’ impressions of pair programming in
CS1. Journal of Educational Resources in Computing, 7, 1–28.

Somervell, J. (2006). Pair programming: Not for everyone? In Proceedings of the 2006
international conference on frontiers in education: Computer science and computer
engineering (FECS’06) (pp. 303–307). Las Vegas, NV: CSREA Press.

170 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

Srikanth, H., Williams, L., Wiebe, E., Miller, C., & Balik, S. (2004). On pair rotation in
the computer science course. In CSEET ’04: Proceedings of the 17th conference on
software engineering education and training (pp. 144–149). Washington, DC: IEEE
Computer Society.

Thomas, L., Ratcliffe, M., & Robertson, A. (2003). Code warriors and Code-A-Phobes:
A study in attitude and pair programming. In Proceedings of the 34th SIGCSE
technical symposium on computer science education (pp. 363–367). New York, NY:
ACM.

VanDeGrift, T. (2004). Coupling pair programming and writing: Learning about
students’ perceptions and processes. In Proceedings of the thirty-fifth SIGCSE
technical symposium on computer science education (pp. 2–6). New York, NY: ACM.

Watkins, K.Z.B., & Watkins, M.J. (2009). Towards minimizing pair incompatibilities to
help retain under-represented groups in beginning programming courses using pair
programming. Journal on Computing in Small Colleges, 25, 221–227.

Werner, L., Hanks, B., & McDowell, C. (2004). Pair programming helps female computer
science students. ACM Journal of Educational Resources in Computing, 4(1).

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to
program. In ICER ’05: Proceedings of the first international workshop on computing
education research (pp. 13–24). New York, NY: ACM.

Williams, L., & Kessler, R. (2000). All I really need to know about pair programming I
learned in kindergarten. Communications of the ACM, 43, 108–114.

Williams, L., & Kessler, R. (2001). Experiments with industry’s ‘‘pair-programming’’
model in the computer science classroom. Computer Science Education, 11(1), 7–20.

Williams, L., Layman, L., Osborne, J., & Katira, N. (2006). Examining the compatibility
of student pair programmers. In AGILE ’06: Proceedings of the conference on AGILE
2006 (pp. 411–420). Washington, DC: IEEE Computer Society.

Williams, L., Layman, L., Slaten, K., Berenson, S., & Seaman, C. (2007). On the impact
of a collaborative pedagogy on African American millennial students in software
engineering. In Proceedings of the 29th international conference on software
engineering (pp. 677–687). Washington, DC: IEEE Computer Society.

Williams, L., McCrickard, S.D., Layman, L., & Hussein, K. (2008). Eleven guidelines for
implementing pair programming in the classroom. In Proceedings of the Agile 2008
conference (pp. 445–452). Washington, DC: IEEE Computer Society.

Williams, L.A. (2000). The collaborative software process. Doctoral dissertation,
University of Utah, Salt Lake City, UT.

Computer Science Education 171

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

A
p
p
e
n
d
ix

Successinfirst-andsecond-
yearprogrammingcourses

SuccessinLatercourses

Retention

Qualityofprograms
producedbypairs

Confidenceinsolutions

Attitudestowardpairing

Impactonlearning

Socialaspectsofpairing

Impactonwomen

Scheduling

Partnercompatibility

PersonalityandPairing

Transitionto
soloprogramming

Partnersassignment
androtation

TeachingStudentstopair

Assessingindividual
contributions

Physicalsetup

B
ra
u
g
h
t,
E
b
y
,
a
n
d
W
a
h
ls
(2
0
0
8
)

X
X

M
cD

o
w
el
l,
W
er
n
er
,
B
u
ll
o
ck
,
a
n
d
F
er
n
a
ld

(2
0
0
3
)

X
X

X
X

X
X

M
cD

o
w
el
l,
W
er
n
er
,
B
u
ll
o
ck
,
a
n
d
F
er
n
a
ld

(2
0
0
6
)

X
X

X
X

M
en
d
es
,
A
l-
F
a
k
h
ri
,
a
n
d
L
u
x
to
n
-R

ei
ll
y
(2
0
0
5
)

X
X

N
a
g
a
p
p
a
n
,
W
il
la
m
s,
W
ie
b
e,

M
il
le
r,
B
a
li
k
,
F
er
zl
i,
a
n
d

P
et
li
ck

(2
0
0
3
)

X
X

X

S
o
m
er
v
el
l
(2
0
0
6
)

X
X

X
Ja
co
b
so
n
a
n
d
S
ch
a
ef
er

(2
0
0
8
)

X
X

X
X

C
a
rv
er
,
H
en
d
er
so
n
,
H
e,

H
o
d
g
es
,
a
n
d
R
ee
se

(2
0
0
7
)

X
X

X
X

X
X

X
B
eg
el

a
n
d
N
a
g
a
p
p
a
n
(2
0
0
8
)

X
X

B
ip
p
,
L
ep
p
er
,
a
n
d
S
ch
m
ed
d
in
g
(2
0
0
8
)

X
X

D
eC

lu
e
(2
0
0
3
)

X
X

X
X

X
X

X
X

H
a
n
k
s,
M
cD

o
w
el
l,
D
ra
p
er
,
a
n
d
K
rn
ja
ji
c
(2
0
0
4
)

X
X

M
el
n
ik

a
n
d
M
a
u
re
r
(2
0
0
2
)

X
X

P
h
o
n
g
p
a
ib
u
l
a
n
d
B
o
eh
m

(2
0
0
6
)

X
W
il
li
a
m
s
a
n
d
K
es
sl
er

(2
0
0
1
)

X
X

B
ra
u
g
h
t,
M
a
cC

o
rm

ic
k
,
a
n
d
W
a
h
ls
(2
0
1
0
)

X
X

X
B
ra
u
g
h
t,
W
a
h
ls
,
a
n
d
E
b
y
(2
0
1
1
)

X
X

X
M
ü
ll
er

a
n
d
T
ic
h
y
(2
0
0
1
)

X
X

X
N
o
se
k
(1
9
9
8
)

X
X

S
im

o
n
a
n
d
H
a
n
k
s
(2
0
0
8
)

X
X

X
X

X
X

V
a
n
D
eG

ri
ft

(2
0
0
4
)

X
X

X
X

X
X

X
X

W
il
li
a
m
s
(2
0
0
0
)

X
X

C
h
a
p
a
rr
o
,
Y
u
k
se
l,
R
o
m
er
o
,
a
n
d
B
ry
a
n
t
(2
0
0
5
)

X
X

X
X

X
X

H
a
n
k
s
(2
0
0
6
)

X
X

X
T
h
o
m
a
s,
R
a
tc
li
ff
e,

a
n
d
R
o
b
er
ts
o
n
(2
0
0
3
)

X
X

X
C
a
o
a
n
d
X
u
(2
0
0
5
)

X
X

X
H
a
n
k
s
(2
0
0
8
)

X
K
u
p
p
u
sw

a
m
i
a
n
d
V
iv
ek
a
n
a
n
d
a
n
(2
0
0
4
)

X
X

X
C
li
b
u
rn

(2
0
0
3
)

X
X

Ja
co
b
so
n
a
n
d
S
ch
a
ef
er

(2
0
0
8
)

X
X

X
X

W
er
n
er
,
H
a
n
k
s,
a
n
d
M
cD

o
w
el
l
(2
0
0
4
)

X
B
ev
a
n
,
W
er
n
er
,
a
n
d
M
cD

o
w
el
l
(2
0
0
2
)

X
X

H
a
n
k
s
(2
0
0
5
)

X

(c
o
n
ti
n
u
ed
)

172 B. Hanks et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

A
p
p
e
n
d
ix
.
(C

o
n
ti
n
u
ed
).

Successinfirst-andsecond-
yearprogrammingcourses

SuccessinLatercourses

Retention

Qualityofprograms
producedbypairs

Confidenceinsolutions

Attitudestowardpairing

Impactonlearning

Socialaspectsofpairing

Impactonwomen

Scheduling

Partnercompatibility

PersonalityandPairing

Transitionto
soloprogramming

Partnersassignment
androtation

TeachingStudentstopair

Assessingindividual
contributions

Physicalsetup

K
a
ti
ra
,
W
il
li
a
m
s,
W
ie
b
e,

M
il
le
r,
B
a
li
k
,
a
n
d
G
eh
ri
n
g
er

(2
0
0
4
)

X

R
a
d
er
m
a
ch
er

a
n
d
W
a
li
a
(2
0
1
1
)

X
S
en
n
et
t
a
n
d
S
h
er
ri
ff
(2
0
1
0
)

X
W
il
li
a
m
s,
L
a
y
m
a
n
,
O
sb
o
rn
e,

a
n
d
K
a
ti
ra

(2
0
0
6
)

X
C
h
a
o
a
n
d
A
tl
i
(2
0
0
6
)

X
C
h
o
i,
D
ee
k
,
a
n
d
Im

(2
0
0
8
)

X
W
il
li
a
m
s,
M
cC

ri
ck
a
rd
,
L
a
y
m
a
n
,
a
n
d
H
u
ss
ei
n
(2
0
0
8
)

X
X

X
X

S
ri
k
a
n
th
,
W
il
li
a
m
s,
W
ie
b
e,

M
il
le
r,
a
n
d
B
a
li
k
(2
0
0
4
)

X
W
il
li
a
m
s
a
n
d
K
es
sl
er

(2
0
0
0
)

X
P
re
st
o
n
(2
0
0
6
)

X

Computer Science Education 173

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

7:
47

 0
3

M
ar

ch
 2

01
6

