
A visual programming approach for teaching
cognitive modelling

Trevor D. Collinsa,*, Pat Fungb

aKnowledge Media Institute, The Open University, Milton Keynes MK7 6AA, UK
bInstitute of Educational Technology, The Open University, Milton Keynes MK7 6AA, UK

Received 29 January 2001; accepted 4 December 2001

Abstract

This paper describes an investigation into the use of a visual programming language to teach computer-
based modelling to undergraduate cognitive psychology students. Four sets of evaluation studies were
carried out. The findings of these theoretical and empirical evaluations are related to the design principles
that informed the language and the context in which it was examined. The educational benefits of gaining
some practical experience of cognitive modelling where highlighted in these studies, as was the importance
of introducing the visual language within a sound teaching framework. The comments of the students and
tutors regarding the use of the Hank visual programming language to teach cognitive modelling indicate
that Hank avoids some of the syntactic problems associated with textual programming languages, it can be
used to illustrate the flow of control during a program’s execution, and it is intuitive and easy to use # 2002
Elsevier Science Ltd. All rights reserved.

Keywords: Applications in subject areas; Programming and programming languages; Teaching/learning strategies

1. Introduction

This paper provides an overview of an 18-month project that set out to explore the use of a
visual programming language for teaching cognitive modelling to undergraduate psychology
students. Hank is a visual programming language designed to support the development of com-
puter-based models of cognitive theories by students with little or no previous computer pro-
gramming experience (Mulholland & Watt, 1998). Computer modelling is an investigative
approach used in a variety of fields including sociology, psychology, chemistry and physics. By

0360-1315/02/$ - see front matter # 2002 Elsevier Science Ltd. All rights reserved.

PI I : S0360-1315(01 )00087-2

Computers & Education 39 (2002) 1–18

www.elsevier.com/locate/compedu

* Corresponding author. Tel.: +44-1908-655731; fax: +44-1908-653169.

E-mail address: t.d.collins@open.ac.uk (T.D. Collins).



successive iterations through the processes of model design, development and testing, an accurate
physical model of an abstract theory can be produced. The behaviour of the completed model can
then be used to reason about the validity of the theory it embodies. In this way, computer mod-
elling provides a means for exploring, analysing and critiquing theories.
Within cognitive psychology, computer modelling is an important methodology used to explore

theories, validate experimental findings and inform further research (Eysenck & Keane, 1995).
However, providing undergraduate psychology students with a practical training in cognitive
modelling is a non-trivial task. Not only must the student learn how to represent knowledge and
the processes involved in creating, retrieving and applying knowledge, they must also learn how
to program a computer. Computer programming with textual languages, such as Lisp or Prolog,
has a steep learning curve associated with it that can deter students from taking an active role in
modelling. In order to alleviate this problem, a visual programming language called Hank was
developed at The Open University’s Knowledge Media Institute (Mulholland & Watt, 1998).
Visual programming languages, like Hank, use visual elements, such as graphics or icons, in

addition to text, to support program development. The use of Hank to support psychology stu-
dents building cognitive models was explored in a series of programming walkthrough evalua-
tions and empirical studies. The findings of the studies, and their implications for both the
development of visual programming languages and the use of visual programming languages
within an educational context are discussed in this paper. The remainder of this section intro-
duces the research objectives, the context of the studies undertaken and the related work. The
following section provides an overview of the Hank visual programming language. Subsequently,
the paper describes the methodology used and the findings of the research. The paper concludes
with a discussion of the implications of this work.

2. Project objectives

The design of the Hank language was informed by existing research undertaken in the areas of
end-user programming and software visualization. The objectives of the project were to examine
the use of Hank in order to support or refute the design principles that informed it, and, given
that Hank was proposed as an easy to learn alternative to traditional text-based programming
languages, investigate the suitability of using visual languages in this educational context.

2.1. Context of these studies

All of the empirical studies described in this paper were carried out in 1999 with students from
The Open University’s third level course on cognitive psychology. The Open University is a dis-
tance learning university based in the United Kingdom. The cognitive psychology course is
studied part-time, over a 9-month period, for approximately 8-h each week and includes a 1-week
full-time residential school.
The students on the course have two opportunities to study cognitive modelling. For their third

assignment the students are required to complete an introductory (paper-based) cognitive mod-
elling project. The educational objectives of this project are to introduce the students to the idea
of developing models of cognition, and to highlight the problems and benefits of this approach to

2 T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18



studying psychology. Later in the course, as part of a 1-week residential school, the students are
given the option to undertake a further advanced (computer-based) cognitive modelling project.
This project is intended to further the students’ practical experience and extend their existing
understanding of cognitive modelling visualization.

2.2. Related research

Related research in the areas of end-user programming and software was used to inform the
design of the Hank language. The primary sources of direction in this regard are briefly con-
sidered here, but a more complete explanation of the design rationale behind Hank is available in
Mulholland and Watt (1998).
In his previous work Mulholland (1998) concluded that in order to support people’s under-

standing of computer programs, software visualization has to provide adequate support for the
user. Specifically, the user should be able to map between the program code and the visualizations
used, review previous events in the execution from any particular point, and be able to predict
and test for future events within a program’s execution.
Nardi and Miller (1991) argued that spreadsheets offer strong support for the co-operative

development of programs. In their study of 11 users from a range of different companies, nearly
all of the spreadsheets used were the result of collaborative work by people with different levels of
programming and domain expertise. They noted two key characteristics of spreadsheets that
facilitated collaboration: layered functionality and tabular structures.
Firstly, spreadsheet functionality can be separated into two distinct programming layers,

referred to as the fundamental layer and the advanced layer. The fundamental layer includes the
fundamental facilities that the user requires to produce a spreadsheet (i.e. a formula language for
computations and the spreadsheet table that provides a means for structuring and presenting
data). The advanced layer provides additional functionality that is unnecessary for constructing a
basic spreadsheet model but nevertheless is very useful. Examples of facilities from the advanced
layer include the following: conditional and iterative control structures, date-time, error trapping
functions, graphs and charts, and a user interface toolkit.
Secondly, Nardi and Miller (1991) argued that the spreadsheet table is a strong visual repre-

sentation that enables users to understand and interpret each other’s work. The tabular structure
of spreadsheets has also been used in other end-user programming languages in an educational
context. Agentsheets (Repenning & Citrin, 1993), and Kidsim (Smith, Cypher, & Spohrer, 1994)
both use a two-dimensional grid layout and graphical rewrite rules to help children write pro-
grams. However, although spreadsheet tables are particularly effective at showing large amounts
of data, they are less effective at illustrating the formulas underlying the cell values in the table
(see Hendry & Green, 1994; Nardi & Miller, 1991).
Spreadsheets are effective at illustrating what a spreadsheet model does, but are poor at illus-

trating how the model works. Conversely, flowcharts have been found to be good at illustrating
how things work but not what they do (Cunniff & Taylor, 1987; Scanlan, 1989; Vessey & Weber,
1986). Comic strip notations offer another means for illustrating the flow of control through a
program. In an approach to programming known as programming by demonstration, comic strip
notations have been developed to show how a series of actions fit together by presenting them as
a set of before and after states (e.g. Lieberman, 1992; Traynor & Williams, 1997). Traynor and

T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18 3



Williams (1997) found that although comic strip notations are valuable for illustrating the linear
execution of a program, they are less effective at representing the execution of more complex
control flow constructs such as branching and looping.
In summary, spreadsheets offer strong support for collaborative work, tabular structures are a

strong visual representation that are commonly used and easily interpreted, flowcharts and comic
strip notations explicitly illustrate the flow of control through a program, and software visuali-
zation should be used to help the user to map, review and test their programs.
Having introduced the objectives of this work, the context of the studies, and the related

research, this section gives a brief overview of the Hank language, its model of execution, and
development environment.

3. Overview of Hank

Having introduced the objectives of this work, the context of the studies, and the related
research, this section gives a brief overview of the Hank language, its model of execution, and
development environment. Hank is made up of three basic constructs: fact cards, instruction cards
and questions. Fact cards adopt a tabular structure for representing factual knowledge, instruction
cards represent procedural knowledge, and questions are used to query fact cards and instruction
cards. Fact cards are made up of a title on the top row, column label(s) referring to components on
the second row, and one or more data rows representing individual facts (see Fig. 1, left).

Questions are used to query information by looking for matching fact cards, or instruction
cards, in the Hank program. Questions are made up of a title on the top row, column label(s) on
the second row, and a single data row on the third row (see Fig. 1, right). Variables, delimited by
question marks (e.g. ?Day?), can be used within the data row of a question. When a match is
found for a query the result is reported as the Status of the system- successful matches report a
status of OK, unsuccessful matches report a status of Fail. In addition to the system’s status, the
values of any instantiated variables are also reported. The example question shown on the right in
Fig. 1 would return the following message: ?Day?=Monday, Status=OK.

Fig. 1. An example of a Hank fact card (left) and a Hank question (right). The title of the fact card’s table (Day of)

identifies the relationship being modelled, the column labels (Event and Day) identify the concepts being described, and
each data row defines a fact, such as there is a Picnic on Sunday, a Horse ride on Sunday, and a Forest walk on
Monday. In the example of a Hank question, shown on the right, the title and column labels (i.e. Day of, Event and

Day) are used to identify the card being queried. The value Forest walk and variable ?Day? match with the third row of
the Day of fact card shown on the left. The response ?Day?=Monday, Status=OK would be given to this query.

4 T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18



Instruction cards are used in Hank to represent procedures (Fig. 2). The top section of an
instruction card is referred to as the instruction card’s ‘‘wish box.’’ The wish box is made up of
three rows; the title on the first row, the component column label(s) on the second row, and the
variables or values used to pass information into and out of the procedure on the third row. The
lower section of the instruction card is referred to as the ‘‘process box.’’ The process box describes
the steps involved in carrying out the procedure using a set of questions connected together using
OK and Fail links. According to the status of each question, the system follows either an OK or a
Fail link. If no applicable link is found after a question has been answered, the system (i.e.
question processor) halts and returns the value of any variables used in the original question as
well as the final status.
The following explicit set of house rules are used in Hank to answer any queries:

1. Ask the question: look to see if there is a match with a fact card or instruction card in the
database. This involves matching the title of the card, the column labels, and one of the
data rows. The data rows are tried in order from top to bottom.

2. Match the variables: if a match was found and the question contained one or more vari-
ables, make a note of the values that they have taken on.

3. Give a reply: if a match was found, then the reply (i.e. the Status) is ‘‘Status=OK.’’ The
answer should also state any variables that have matched with values. If a match was not
found then the reply is ‘‘Status=Fail’’ and the variables need not be reported.

The three programming constructs described above are used to write program on paper, the
above set of house rules are used to follow how those programs would execute.
The computer environment for Hank includes: a graphical environment in which the students

can write Hank programs, an automated question processor that follows the house rules in order
to execute programs, and a bi-directional tracer for illustrating the steps of a program’s execu-
tion. Three windows are available under the ‘‘Window’’ menu for switching between each of these

Fig. 2. An example of a Hank instruction card. An instruction card is made up of two parts—a ‘‘wish box’’ (at the top)
and a ‘‘process box’’ (at the bottom). In the wish box the title of the table (Same day) identifies the relationship being

modelled, the column labels (Event and Other event) identify the concepts being described, and the variables under the
column labels (?event1? and ?event2?) are used to pass information in and out of the instruction card. The process box
contains a set of instructions i.e. linked queries. Starting at the top left hand corner the questions are asked in sequence,

each time a question is answered the out-going link with the same status value as the current question (i.e. OK or Fail)
is followed to the next question.

T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18 5



three tasks; the ‘‘Program Window,’’ ‘‘Control Panel’’ and ‘‘Workspace.’’ Fig. 3 shows a screen
shot containing an example of each window.
By drawing on the use of simple visual representations, such as tables to represent data in fact

cards and directed links to illustrate the control flow of the program within instruction cards, the
language itself is intended to be easier for psychology students to learn and use than more formal
textual languages, such as Prolog or Lisp. The Hank modelling environment can be downloaded
from the following WWW address: http://kmi.open.ac.uk/projects/hank

4. Methodology

Four separate studies were undertaken. The first study used the programming walkthrough
methodology as described in (Lewis & Rieman, 1993) to examine the course materials prior to the
course starting in February 1999. The second study used a postal questionnaire to survey the
students’ opinions of the introductory modelling project undertaken in April. The third study

Fig. 3. The Hank modelling environment showing an example program. Three windows are displayed in this view: the
program window (background left), control panel (foreground right) and workspace (foreground bottom). The pro-
gram window is used to draw the fact cards, questions and instruction cards that make up a program, the control panel

is used to ask a selected question in the program window, and the workspace window is used to show step by step
traces of the matching process used by Hank to answer a question.

6 T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18



involved a second student questionnaire survey to gather the students’ opinions on the advanced
modelling project, that was carried out at residential school during the months of July and
August. The fourth and final study, that was carried out after the course had ended, surveyed the
opinions of the course tutors regarding the cognitive modelling aspects of the course and the
suitability of the Hank language. Details of the methodology used in these four studies are given
in the following four subsections.

4.1. Programming walkthroughs

In order to understand the context of use for the Hank language, a theoretical evaluation of the
support materials was carried out prior to the course starting. This used the programming walk-
through methodology to evaluate the course materials, practice exercises and assignment tasks.
The programming walkthrough evaluation method is a task centred approach used to predict
user difficulties (Lewis & Rieman, 1993). The complete task to be carried out by the user is ana-
lysed step by step, in an attempt to identify any possible sources of error in the interface and the
supporting materials, such as ambiguities, inconsistencies, and insufficient or poorly structured
guidance.

4.2. Survey of students undertaking an introductory project

To collect the students’ opinions regarding the introductory cognitive modelling project a
questionnaire was posted to a third of the 1500 students registered for the course (184 completed
questionnaires were returned). The questionnaire asked a combination of closed and open-ended
questions regarding the following:

� the student’s perceived improvement in their understanding of the theory they modelled;
� the student’s normal usage of computers;
� the level of support provided by the project booklets and tutorial sessions;
� how easy the students found it to build a model using Hank; and
� whether or not the students found the house rules, describing how to execute a program,

helpful.
� In this way it was intended that an overall quantitative summary of the students’ experi-

ences could be made, along with detailed qualitative analysis of the good and bad features
they encountered.

4.3. Survey of students undertaking an advanced project

To survey the opinions of the students, concerning their use of the Hank modelling environ-
ment in groups as part of their residential school project, a questionnaire was made available to
the students at the end of each cognitive modelling project session. During the 1999 presentation
of the course, a total of 22 cognitive modelling sessions were run as part of the residential school
programme. Ninety-one completed questionnaires were received from an approximate course
maximum of 550 students. The questionnaire itself asked a combination of closed and open-
ended questions regarding the following:

T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18 7



� the student’s self-perceived improvement in understanding cognitive theories;
� the extent to which their understanding had changed of how cognitive modelling is used in

psychology;
� whether the tutorial sessions supporting the project had been helpful;
� how easy the student had found it to build a model;
� whether the student had found the programming environment helpful; and
� how easy the student had found it to work in a group to program their model.

4.4. Course tutor survey

Open University students are assigned an associate lecturer whom they can contact for advice
and support. Associate lecturers, usually referred to as tutors, are responsible for providing
monthly (face-to-face) tutorials for their students and for marking their students’ assignments
(referred to as ‘tutor marked assessments’, TMAs). During the 1999 presentation, there were 71
tutors employed for the course. This study was designed to capture the opinions of the tutors
regarding the use of Hank on the course. A copy of a questionnaire was posted to all 71 tutors
and 25 completed questionnaires were returned. The questionnaire itself was structured around
the following:

� the tutor’s opinions on the effectiveness of the introductory support materials;
� how easy the tutor found it to assess their students’ understanding from the introductory

assignment;
� the tutor’s opinions on the effectiveness of the advanced cognitive modelling project carried

out at residential school; and
� the effectiveness of the Hank visual programming language for tutoring cognitive

modelling.

5. Findings of the research

The findings of the above four studies is given here. A more detailed description of the findings
from the programming walkthrough evaluation can be found in (Collins & Fung, 1999). Further
details of the three questionnaire surveys are available in the following survey reports: (Collins &
Fung, 2000a, 2000b, 2000c).

5.1. Programming walkthroughs

For the introductory cognitive modelling project booklet (a written text document made avail-
able to all students as support material), several recommendations were made regarding the lay-
out and terminology used in the examples. Some concerns were raised over the sufficiency of the
explanations given for computer programming concepts. Specifically, the explanation of variables
and the matching process used. The explanation of variables was deliberately made at a non-
technical beginners level, however, it was difficult to predict whether the explanation given would
be sufficient for the requirements of the project. The matching process in the introductory

8 T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18



exercises used only the first match found for a query, the consequences of multiple matches within
a fact card were not addressed in the project booklet.
Regarding the students’ exercises and assignments, a concern was raised in relation to the level

of support the students should receive for producing their paper-based models. Could the stu-
dents be expected to draw out their own fact cards, instruction cards and questions, or should a
blank set of cards be supplied for the students to complete? Also, it was recommended that in
addition to completing the modelling exercises and assignment questions, the students should be
required to provide a written explanation of their model. Otherwise, in some of the questions
used, the students could guess the answer without fully understanding the programming involved.
With respect to the advanced modelling project carried out at residential school, three potential

difficulties were noted. These referred to the additional Hank primitives required for some of the
models, the level of computer feedback provided by the Hank modelling environment, and the
degree of guidance given to the students at residential school. Firstly, in the introductory project
the students use the ‘‘Ask’’ primitive to ask a question, this returns the first match to a given
query. However, there are a number of additional primitives, which the students are not intro-
duced to, for example the ‘‘Ask All’’ primitive that asks for all the solutions to a query, not just
the first match. Some of these primitives may be used in the residential school projects. The resi-
dential school tutors must ensure that a sufficient set of additional Hank primitives is introduced
to the students at an appropriate time.
Secondly, at the time of evaluation few error messages were available and the cause of failure

was not reported in the computer-based modelling environment. Hank may fail to find a match-
ing fact card or instruction card to a query, or it may fail to find a specific data row within a fact
card. For the purposes of debugging a program it was felt that feedback on the cause of failure
would be beneficial to the user. Thirdly, it was proposed that the students should be provided
with a detailed description of the stages involved in building their model. The anticipated stages
should be ordered such that the students are faced with evenly paced steps through the modelling
process, that build on the students’ previous knowledge, steep or uneven jumps in complexity for
which the students would be unprepared should be avoided.
As a result of the feedback given from the programming walkthrough evaluations, several

changes were made to the course materials. The layout and terminology used in the project
booklet were improved. No changes were made as a result of the concerns raised regarding the
sufficiency of the description of variables or the matching process. The authors of the course
materials were cautious to ensure that the introductory material remained sufficiently
straightforward for students learning at a distance and suggested that a more complete
description of variables and the matching process could be provided for the students at resi-
dential school.
The decision was also made to ask the students to draw their own cards rather than providing

a set of blank templates. Although drawing the cards on paper was seen as a repetitive task for
the students, there are few alternatives. By providing the students with a blank set of cards to
complete, a fair proportion of the modelling task is already given. For example: the number of
columns in a Hank fact card or question card would indicate the number of items being repre-
sented and the number of questions inside a Hank instruction card would indicate the number
of steps in a process. The students were asked to explain their models in the introductory
assignment.

T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18 9



It was decided that the introduction of the additional Hank primitives used in some of the
residential school projects should be left to the discretion of the residential school tutors, to gauge
the progress of their students and introduce only the required primitives. The level of feedback
given in the Hank modelling environment was extended to include detailed messages describing
the cause of failure.

5.2. Survey of students undertaking an introductory project

The introductory project involved the development of a simple model of schema theory. The
majority of respondents (126 out of 184, 68.5%) felt that the introductory cognitive modelling
assignment had helped their understanding of schema theory. Furthermore, 80% of the students
who commented were able to identify specific aspects of schema theory about which they felt their
understanding had improved as a result of completing the project.
It was a matter of interest as to whether or not the students’ prior computer usage or programming

experience would make it easier for them to understand the principles of cognitive modelling and/or
use the Hank visual programming language. Eighty five percent of the respondents (156 out of 184)
said they used a computer. One hundred and fifty-five of the students said they had used some
form of word processing package, 97 students reported using a spreadsheet package, 81 students
had used a database package, and 19 students had used some form of programming package.
The students reported frequency of use for word processing and programming packages were

both found to correlate with their self-perceived ability to create instruction cards (rs=0.182,
P=0.025, and rs=0.193, P=0.024, respectively) and interpret Hank questions (rs=0.164,
P=0.042 and rs=0.227, P=0.007). Interestingly, those students with little or no programming
experience were more likely to say they found the assignment improved their understanding of
schema theory than those that were familiar with programming (rs=�0.184, P=0.03). This may
be the result of the students’ prior expectations of programming gained though the use of tradi-
tional text languages, such as Prolog. Whether or not the students had previously used a com-
puter did not affect their ability to use Hank on paper.
The cognitive modelling project and assignment booklets were used to introduce the topic of

cognitive modelling. The survey data indicated that both of the booklets were considered, in the
majority of cases, to be helpful, well written and easy to follow. However, some problems were
experienced on the final modelling questions in the introductory assignment.
Less than half of the students attended a tutorial on cognitive modelling, which is made avail-

able to students before completing their written assignment (90 of the 184 respondents, 48.9%).
Of those that did attend the tutorial, 61 students (67.8% of tutorial attendees) said it had helped
their understanding of cognitive modelling and 52 (57.8%) said it had helped their understanding
of the use of the Hank language. There were no significant differences in the responses from the
students who had attended a tutorial and those who had not, in the following four areas: how
easy the students found it to use fact cards, how easy they found it to create Hank question cards,
how easy they found it to interpret Hank question cards, and in how helpful they found the house
rules. However, there was a significant difference between the responses for the students’ reported
ease of using instruction cards (Mann Whitney, z=2.073, P=0.038). In other words, those that
had attended a tutorial on cognitive modelling were more likely to say they found it easier to use
instruction cards than those who had not.

10 T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18



As illustrated in Fig. 4, the majority of students found fact cards and instruction cards easy to
use. Similarly, as illustrated in Fig. 5, creating Hank questions and following the steps involved in
answering Hank questions, were also considered to be fairly easy tasks by the majority of the
students. Unsurprisingly, those respondents who said they found it easy to create Hank questions
also tended to say that they found it easy to follow the steps involved in answering Hank ques-
tions (rs=0.784, P<0.001). Of the concerns noted, the most common difficulty experienced was
that of choosing the best knowledge representation. Other frequently noted concerns related to
the time and effort involved in drawing the cards, and the students’ confidence in their ability to
develop their own models.
The house rules (i.e. the instructions used to process Hank questions) were widely used.

Seventy-seven percent of the respondents (141 out of 184) said they did refer back to the house
rules when building their own models. It was of interest that this group of students were sig-
nificantly more likely than those students that had not used the house rules to say that their
understanding of schema theory had improved as a result of the cognitive modelling project (Chi-
squared, X2=8.306, df=1, P=0.004). There were also significant differences in how easy these

Fig. 4. Two bar charts showing the students’ ratings of how easy they found it to represent knowledge using fact cards

(left) and instruction cards (right).

Fig. 5. Two bar charts showing the students’ ratings of how easy they found it to created a Hank question for a given

query in English (left) and to understand the steps involved in answering a Hank question for a given model (right).

T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18 11



two groups of students found the following operations: to represent knowledge using fact cards
(Mann Whitney, z=2.958, P=0.003), to create Hank questions for a given query in English
(z=2.302, P=0.021), and to understand the steps involved in answering a Hank question for a
given model (z=2.706, P=0.007).

5.3. Survey of students undertaking an advanced project

In the second student survey, all 87 students that reported using a computer had some experi-
ence of word processing, 61 students had used a spreadsheet package, 49 students had used a
database package, and 14 students had used some form of programming package. There were no
significant correlations between the students’ frequency of computer use and their perceived
improvement in their understanding of the theory they modelled, the change in their under-
standing of the use of cognitive modelling in psychology, or how easy they found it to build their
models using Hank. However, as detailed in Table 1, there were significant positive correlations
between the students’ reported usage of different types of computer package and their reported
ease of building models with Hank and how helpful they said they found the Workspace view.
These findings indicate that the students’ frequency of use, particularly of spreadsheet and

database packages, is related to their perception of the Hank programming language and how
easy they find it to build models using the Hank modelling environment.
Four existing theories taken from cognitive psychology were suggested at residential school for

the students to model: conceptual hierarchies (Collins & Quillian, 1969), production systems
(Young & O’Shea, 1983; Brown & Burton, 1986), means ends problem solving (Simon, 1986),
and semantic primitives (Shank, 1972). The majority of respondents chose to model the con-
ceptual hierarchies theory modelled by 42 students, production systems were modelled by 34
students, means ends problem solving by 12 students, and semantic primitives by two students.
Only one student modelled an alternative theory, namely a theory of face recognition.
Fifty-three students felt that their understanding of the theory they had modelled improved a

lot, 25 students felt there had been some improvement in their understanding, and 12 students felt
that their understanding had improved a little (one respondent gave no response to this question).
The comments made by respondents, regarding which aspects of cognitive theory modelling had
helped them understand, broadly fell into three categories: those identifying aspects of the theory
(35 comments), those regarding the use of cognitive modelling (28 comments), and those regarding

Table 1
The positive correlations found between the students’ reported frequency of using word processing, spreadsheet,
database and programming packages, and their ease of building models using Hank and how helpful they found the

Workspace view

Frequency of computer

package use

Ease of building model

using Hank

How helpful found

Workspace view

Word Processing packages rs=0.017, P=0.881 rs=0.266, P=0.041
Spreadsheet packages rs=0.299, P=0.008 rs=0.326, P=0.004

Database packages rs=0.319, P=0.004 rs=0.213, P=0.062
Programming packages rs=0.276, P=0.015 rs=0.029, P=0.803

12 T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18



the Hank programming language (17 comments). Only six comments fell outside of these three
categories. An example from each comment category is as follows:

‘‘Helped me gain an insight into the search process also started thinking about processes
involved in false sentences’’ [7]
‘‘It helps to explore in more depth the theory and to critically analyse it.’’ [61]
‘‘I understand queries/instruction cards now.’’ [65]

On a four-point scale, 34 of the 91 questionnaire respondents felt that their understanding of how
cognitive modelling is used in psychology had changed a lot as a result of their computer based pro-
ject. Thirty-six students felt that their understanding had changed to some extent and 15 felt that their
understanding had changed a little. Five of the students reported no change in their understanding.
When asked to describe the ways in which their understanding of how cognitive modelling is

used in psychology had changed, 46 of the 74 comments made were with regard to an improved
appreciation of the use of cognitive modelling through personal experience. Some illustrative
examples are as follows:

‘‘More flexible approach to CM to try out ideas/more creativity. There are many ways to
model the same process—just as humans use different strategies, etc.’’ [3]
‘‘It has improved the distinction between theory and programming, also shown how to focus
on the theory and using modelling as a tool.’’ [13]
‘‘It helped see how it is applied rather than simply an abstract area of psychology.’’ [61]
‘‘I can see its relevance where before I couldn’t.’’ [91]

Other categories formed from the comments concerned an improved appreciation of the dis-
tinction between cognitive modelling and artificial intelligence (three comments). Three also
commented on an improved understanding of the theory and three on an appreciation of cogni-
tive modelling as a means for analysing a theory. Four students commented on feeling that there
had been a general improvement in their appreciation of cognitive modelling.
The students were asked to rate how easy overall they had found using the computer version of

Hank when building their models. Three students rated it as extremely difficult, four rated it as
very difficult, 48 as fairly difficult, 26 as fairly easy, and four as very easy (six respondents gave no
response). Although the majority of respondents rated building models in Hank as a fairly diffi-
cult task, the specific difficulties reported using fact cards, instruction cards and questions were
relatively few (six comments, 38 comments and 15 comments, respectively). Several common
categories were evident in the comments received, such as generally OK (i.e. no problems), problems
with the Hank language (i.e. non-specific difficulties), problems with unfamiliar Hank primitives,
problems with the interface, representation problems, and problems with the terminology used.
Over half of the respondents when asked how helpful they found the control panel and work-

space windows rated them as very helpful. Regarding the control panel, 42 respondents said they
had found it to be very helpful, 28 felt it was quite helpful, eight felt that it had helped a little, and
three respondents considered it to be of no help. When asked about the workspace window, 51
students reported it to be very helpful, 25 felt it was quite helpful, five felt it had helped a little,
and four of the students considered it to be of no help.

T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18 13



Sixty-five percent of the respondents said they had found it easy to work with Hank in a group.
Six students said that it had been extremely easy, 25 said it had been very easy, 28 students had
found it fairly easy, 22 found it fairly difficult, five felt it had been very difficult, and five felt
group working had been extremely difficult. When asked to describe in their own words what, if
anything, they had found difficult about working in a group, out of the 66 students who com-
mented, 20 said they had no difficulties working in a group.
The majority of the difficulties reported regarding working in a group did not refer to the Hank

visual programming language or environment. Rather, the difficulties commented upon were
primarily to do with the social dynamics of the students’ groups. Of the 46 respondents that did
describe difficulties that they experienced with working in a group, 15 said they had experienced
problems due to the variation in the abilities of their group’s members. Five said only one person
was able to use the computer at a time, four said they had been frustrated with other members of
their group, three reported problems with group dynamics, and three had had difficulties because
one individual hogged the computer. Three reported that one individual in their group tended to
lag behind, three said they found it difficult to make group decisions, and three said they had
problems because their group was too large. Two respondents said they had problems seeing the
screen and five gave other individual comments.

5.4. Course tutor survey

Overall, the majority of the 25 course tutors that responded felt that the project booklet pro-
vided a good introduction to cognitive modelling, even though several of them said they had
difficulties explaining the card format of the Hank language and the matching process employed
in their tutorial sessions. With regard to improving the booklet, three tutors said they felt the
document was fine as it was, four tutors felt more examples and exercises would improve the
booklets, and two tutors requested blank modelling cards. Two tutors felt the booklet should be
revised to reflect the learning objectives of the project, three felt that the course should return to
using Prolog.
The majority of the tutors felt that the assignment questions got progressively more difficult.

They preferred the report assignment format over the essay format used in previous years, and
believed the marking guidelines provided were sufficient. However, about half of the respondents
said they had difficulties marking the introductory assignment and/or providing the students with
appropriate feedback. Attributing marks between the multiple components of each question was
the most commonly noted difficulty with marking, and identifying and explaining the students’
programming errors was the most commonly noted problem regarding student feedback. The
tutors’ suggestions for improving the assignment included clarifying the written instructions,
changing the assignment questions, and preventing the students from spending too much of their
time drawing Hank cards.
The residential school projects were in general considered to provide a good extension to the

students’ understanding of cognitive modelling. Although the comments made regarding the
residential school projects were quite diverse, several tutors suggested providing a broader range
of projects as a potential improvement for the residential school. Almost half of the respondents
said they found marking the cognitive modelling reports more difficult than other residential
school project reports. The two most common reasons put forward for these difficulties were that

14 T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18



the tutors found it difficult to understand the students’ models and that the students did not
explain their models sufficiently.
The Hank language was generally perceived as being good for enabling the students to build

their own models. Although nearly half of the respondents identified misconceptions within their
student group, only two misconceptions were noted by more than one tutor. These indicated a
misunderstanding of variables and a belief that the language can only be used to model schema
theory. Twenty-two of the 25 respondents had previously tutored the course using the language
Prolog. Of those 22, two rated Hank as extremely easy compared to Prolog, two rated it as very
easy compared to Prolog, nine as easy, four as difficult, one as very difficult, and one as extremely
difficult (three gave no response). The most commonly noted advantages of using Hank were
that, through its visual representation it avoids some of the syntactic problems of Prolog, it is
more user-friendly and intuitive, and allows the students to see the flow of control. The main
disadvantages of using Hank were with regard to understanding the students’ models, the effort
involved in drawing the cards in the introductory assignment and learning the terminology used
to describe the language. When asked to suggest improvements to the Hank language, four tutors
suggested improvements should be made to the explanation of the language rather than the lan-
guage itself.

6. Discussion

The objectives of the research were to examine the use of Hank in order to support or refute the
design principles that informed it, and investigate the suitability of using visual languages in an
educational context. The implications for visual language design and the use of visual languages
are discussed here.
As noted in the course tutor survey the advantages of using Hank on a cognitive modelling

course for undergraduate psychology students are that it shows the control flow of the program,
it avoids the syntactic problems associated with text languages, and it is intuitive and easy to use.
Both of the cognitive modelling projects were considered by the students to improve their
understanding of the theories they modelled, and the practical experience gained on the students’
second project strengthened their understanding of cognitive modelling and its role in psychol-
ogy. The card format of the language was picked up quickly by the students and used effectively
to produce accurate models of cognitive theories. The majority of the problems the students
encountered while developing their models were to do with their representation of the theory,
rather than the programming of the computer.
The house rules, which explicitly state the execution process of the language, provided a sig-

nificant support for modelling on paper and enabled the students to predict and verify the beha-
viour of their model when using the computer environment. Interpreting the behaviour of their
model was further supported by the workspace window, which provided an explicit comic strip
illustration of the program’s execution. The majority of students rated Hank as easy to work with
in a group, where difficulties did arise they were generally due to the social dynamics of the group
rather than the language being used.
The effect of the face-to-face tutorial support could not go unnoticed in these studies, support

and encouragement were provided by tutors and welcomed by the students. Programming was

T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18 15



not an activity that the vast majority of students had any experience of and although the topic
was seen as a challenging part of the course, the students’ appreciation of its worth and sense of
achievement from completing the cognitive modelling projects were considerable. The students’
usage of computer packages particularly spreadsheets and databases, did appear to have an affect
on the students’ perception of their ability to use Hank. However, this may be a reflection of the
students’ confidence in their abilities rather than an accurate indication of their actual ability. The
students’ and tutors’ comments regarding the advantages of using Hank indicate that prior
computing experience does not influence the students’ ability to use it.
The introduction of the fundamental computing concepts used in Hank is another aspect of the

course that requires careful attention. It is clearly important, given the comments of the students
and tutors, to introduce the existence of the additional Hank primitives to the students at the
beginning of their advanced modelling project, even if a fuller explanation of their function is
delayed until the additional primitives are required. The concerns raised in the programming
walkthrough evaluations regarding the sufficiency of the explanation of programming variables
and the matching process used in Hank were echoed by some of the tutors’ comments. These
concerns may be alleviated by clarifying or extending the explanation of the computing concepts
used in Hank either at a face-to-face tutorial or in the support materials provided.
The tutors’ comments regarding the assessment of the students’ assignments indicated that the

cognitive modelling assignments were relatively difficult to mark compared to other course
assignments. Changing the modelling language used on the course has implications for those
tutoring the course as well as those studying it.

7. Conclusions

The research has considered what advantages were to be gained from using visual programming
in this educational context and has sought to identify the source of those advantages. The data
has also indicated, however, that the setting of the visual language within a sound teaching fra-
mework appears to be an important factor in its success in meeting its design goals. The studies
described here support the following conclusions:

� Visual languages by their design can provide a simple syntax that makes them easier to use
than textual languages with a more complex syntax.

� The comic strip notation used in the Workspace view of the Hank modelling environment
does offer effective support for showing how a program works. However, like the comic
strip notations studied by Traynor and Williams (1997), it may be less effective when
showing complex control flow, such as branching and looping.

� While the visual programming language being investigated appeared to facilitate pro-
gramming for those with little experience, it is nevertheless important that support mate-
rials and teaching dialogue uses consistent and clear descriptions throughout.

� The importance of practical experience in cognitive modelling is as important when using a
visual programming language as it would be when using a conventional text-based pro-
gramming language. In the same way as reading about other people’s experiments is not as
interesting or informative as carrying out those experiments for oneself, reading about

16 T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18



cognitive modelling is no substitute for practical experience. Hank did appear, however, to
make that experience more accessible.

Acknowledgements

The authors would like to thank the members of the Open University’s Psychology Department
for their help and assistance in completing this research, particularly the members of the cognitive
psychology course team, namely: Sandy Aikenhead, Nick Braisby, Judy Green, Peter Naish,
Ingrid Slack and Stuart Watt. The programming walkthrough evaluations described in this paper
were undertaken in collaboration with Clayton Lewis from the University of Colorado at
Boulder and Paul Mulholland from the Open University’s Knowledge Media Institute. The
authors would like to thank Clayton and Paul for their help and support during this project. This
work was funded by a research committee grant from The Open University’s Institute of Educa-
tional Technology.

References

Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive

Science, 2, 155–192.
Collins, T. D., & Fung, P. (1999). Cognitive modelling for psychology students: the evaluation of a pragmatic

approach to computer programming for non-programmers. In The Proceedings of the 7th International Conference on

Computers in Education, pages 216–223. Osaka, Japan. November 1999.
Collins, T. D., & Fung, P. (2000a). Hank- a visual programming language: Its use as an introduction to cognitive

modelling. CITE Technical Report Number 259. Institute of Educational Technology, The Open University, UK.
June 2000.

Collins, T. D., & Fung, P. (2000b). Novice cognitive modellers using a visual programming language. CALRG Tech-
nical Report Number 193. Institute of Educational Technology, The Open University, UK. October 2000.

Collins, T. D., & Fung, P. (2000c). Visual programming for cognitive modelling: A teaching perspective. CALRG

Technical Report Number 194. Institute of Educational Technology, The Open University, UK. October 2000.
Collins, A., & Quillian, M. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal

Behaviour, 9, 432–438.

Cunniff, N., & Taylor, R. P. (1987). Graphical vs. textual representation: an empirical study of novices’ program
comprehension. In The Proceedings of the Empirical Studies of Programmers Second Workshop. G. M., Olson, S.
Sheppard, and E. Soloway, Eds.

Eysenck, M., & Keane, M. (1995). Cognitive psychology: a student’s handbook (3rd ed.). Hove, UK: Lawrence Erlbaum

Associates.
Hendry, D. G., & Green, T. R. G. (1994). Creating, comprehending and explaining spreadsheets: a cognitive inter-

pretation of what discretionary users think of the spreadsheet model. International Journal of Human-Computer

Studies, 40, 1033–1065.
Lewis, C., & Rieman, J. (1993). Task-centered user interface design. Shareware book available from ftp://ftp.cs.color-

ado.edu/pub/distribs/clewis/HCI-Design-Book/.

Lieberman, H. (1992). Dominos and storyboards: beyond icons on strings. In The Proceedings of the IEEE Conference
on Visual Languages. Seattle, 1992.

Mulholland, P. (1998). A principled approach to the evaluation of Software Visualization: a case-study in Prolog. In

J. Stasko, J. Domingue, M. Brown, & B. Price (Eds.), Software visualization: programming as a multimedia experi-
ence. Cambridge, MA: MIT Press.

T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18 17



Mulholland, P., & Watt, S. (1998). Hank: A friendly cognitive modelling language for psychology students. In The

Proceedings of the IEEE Symposium on Visual Languages, VL’98. Nova Scotia, Canada.
Nardi, B. A., & Miller, J. R. (1991). Twinkling lights and nested loops: problem solving and spreadsheet development.

International Journal of Man-Machine Studies, 34, 161–184.

Repenning, A., & Citrin, W. (1993). Agentsheets: applying grid-based spatial reasoning to human-computer interac-
tion. In The Proceedings of the 1993 IEEE Workshop on Visual Languages, VL’93.

Scanlan, D. A. (1989). Structured flowcharts outperform pseudocode: an experimental comparison. IEEE Software, 6,

28–36.
Schank, R. C. (1972). Conceptual dependency: a theory of natural language understanding. Cognitive Psychology, 3,

552–631.
Smith, D. C., Cypher, A., & Spohrer, J. (1994). KIDSIM: Programming agents without a programming language.

Communications of the ACM, 37, 13–30.
Simon, H. A. (1986). Information processing theories of human problem solving. In W. K. Estes, (Ed.) Handbook of

Learning and Cognitive Processes.

Traynor, C., & Williams, M. G. (1997). A study of end-user programming for graphic information systems. In
S. Wiedenbeck, & J. Scholtz (Eds.), The Proceedings of the Empirical Studies of Programmers Seventh Workshop.
New York: ACM Press.

Vessey, I., & Weber, R. (1986). Structured tools and conditional logic: an empirical investigation. Communications of
the ACM, 29, 48–57.

Young, R., & O’Shea, T. (1983). Errors in Children’s Subtraction. Cognitive Science, 5, 153–177.

18 T.D. Collins, P. Fung /Computers & Education 39 (2002) 1–18


