
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Download by: [b-on: Biblioteca do conhecimento online UL] Date: 03 March 2016, At: 09:06

Computer Science Education

ISSN: 0899-3408 (Print) 1744-5175 (Online) Journal homepage: http://www.tandfonline.com/loi/ncse20

Introduction to autonomous mobile robotics using
Lego Mindstorms NXT

H. Levent Akın, Çetin Meriçli & Tekin Meriçli

To cite this article: H. Levent Akın, Çetin Meriçli & Tekin Meriçli (2013) Introduction to
autonomous mobile robotics using Lego Mindstorms NXT, Computer Science Education, 23:4,
368-386, DOI: 10.1080/08993408.2013.838066

To link to this article: http://dx.doi.org/10.1080/08993408.2013.838066

Published online: 27 Sep 2013.

Submit your article to this journal

Article views: 313

View related articles

Citing articles: 2 View citing articles

http://www.tandfonline.com/action/journalInformation?journalCode=ncse20
http://www.tandfonline.com/loi/ncse20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2013.838066
http://dx.doi.org/10.1080/08993408.2013.838066
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/08993408.2013.838066
http://www.tandfonline.com/doi/mlt/10.1080/08993408.2013.838066
http://www.tandfonline.com/doi/citedby/10.1080/08993408.2013.838066#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/08993408.2013.838066#tabModule

Computer Science Education, 2013
Vol. 23, No. 4, 368–386, http://dx.doi.org/10.1080/08993408.2013.838066

Introduction to autonomous mobile robotics using Lego Mindstorms
NXT
H. Levent Akına∗, Çetin Meriçlib and Tekin Meriçlia

aDepartment of Computer Engineering, Boğaziçi University, Istanbul, Turkey; bComputer
Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

(Received 22 May 2013; accepted 31 July 2013)

Teaching the fundamentals of robotics to computer science undergradu-
ates requires designing a well-balanced curriculum that is complemented
with hands-on applications on a platform that allows rapid construction
of complex robots, and implementation of sophisticated algorithms.
This paper describes such an elective introductory course where the
Lego Mindstorms NXT kits are used as the robot platform. The aims,
scope and contents of the course are presented, and the design of the
laboratory sessions as well as the term projects, which address several
core problems of robotics and artificial intelligence simultaneously, are
explained in detail.

Keywords: undergraduate robotics education; Lego Mindstorms NXT;
using robots in computer science education

1. Introduction
Since 2001 we have been participating in the RoboCup (Kitano, Asada,
Noda, & Matsubara, 1998) competitions and as a culmination of our ex-
periences we have gathered extensive knowledge on building successful
autonomous robot teams in realistic competitive environments, and we had
ample opportunity to assess the skills and shortcomings of the team mem-
bers who are almost exclusively computer science students (Akın, 2005).
Teaching robotics to computer science undergraduate students is a challeng-
ing problem as they lack a good grasp of the uncertainty notion associated
with every physical part of a typical robotic system. Most of them also lack
the experience and knowledge in electronics and mechanics to build a robot
from scratch. Therefore, to efficiently teach robotics to such an audience, a
carefully crafted curriculum should be complemented with a platform that
allows rapid construction and task-specific modification of the hardware,
and implementation of sophisticated algorithms.

∗Corresponding author. Email: akin@boun.edu.tr

© 2013 Taylor & Francis

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

Computer Science Education 369

Lego Mindstorms NXT kit satisfies all these requirements, and the limited
processing capability of the platform forces computer science students to
put forward their solid skills on efficient software development. The use of
Lego Mindstorms for teaching basic robotics or as an educational aiding
tool is common in K-12 level curricula (Mataric, 2004). It is widely used for
teaching common computer science and programming concepts at the un-
dergraduate level (Cliburn, 2006; Lew, Horton, & Sherriff, 2010; Williams,
2003), there are also several courses that aim to teach practical electrical
engineering (Behrens et al., 2010; Ranganathan, Schultz, & Mardani, 2008),
mechatronics (Gómez-de Gabriel, Mandow, Fernández-Lozano, &
García-Cerezo, 2011) and robotics fundamentals (Brandt & Colton, 2008;
Jaksic & Spencer, 2008; Jung, 2013; Zhang et al., 2007).

We designed a robotics course for senior computer science students
that utilizes Lego Mindstorms NXT in an attempt to teach fairly advanced
fundamental concepts of robotics without using expensive hardware plat-
forms featuring abundant resources. This paper describes the goals, design
choices, course contents and student evaluation methods of an introductory
undergraduate robotics course offered in the Department of Computer
Engineering at Boğaziçi University, Turkey. The course consists of weekly
lectures explaining the theoretical aspects such as navigation, path planning,
sensor and actuator calibration, probabilistic inference and control theory.
Each lecture is followed by a laboratory session where the covered topics
are reinforced through hands-on application. A month-long-term project
structured as a competition is assigned to challenge the students to work as
teams to design an end-to-end system in which they properly engineer the
integration of the scientific methods learned during the lectures.

The organization of the rest of the paper is as follows: In Section 2, the
description of the course is given. The material presented in the lectures
weekly is given in Section 3 and the projects are described in Section 4. The
evaluation of both the students and the course are presented in Section 5.
The conclusions are given in Section 6.

2. Course description
A good undergraduate-level introductory robotics course should be
designed to include as many topics as possible to form a solid basis for
building and programming robots, yet it should be enjoyable and easy to
follow for the students. With these goals in mind, based on our actual
extensive experience in building autonomous robots, we decided to cover
the following topics that we think constitute the fundamentals of mobile
robotics:

• uncertainty in sensing and action, and methods for dealing with it,
• self-localization,

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

370 H.L. Akın et al.

• path planning and obstacle avoidance,
• behaviour-based and reactive controller architectures,
• control theory,
• mapping and
• advanced topics such as multi-robot systems, learning, and social

robotics.
Uncertainty is one of the major issues of robotics; however, it is not very well
understood by computer science undergraduates as they are not typically
accustomed to interacting with the physical world and the noise that is
associated with almost every physical entity. Therefore, we decided to em-
phasize particularly the uncertainty notion and the methods for handling
it, including sensor and actuator calibration, filtering, and probabilistic
inference algorithms. The topics covered in this course are supported with an
optional textbook (Mataric, 2007) and a set of reference books on robotics
(Dudek & Jenkin, 2000; Martin, 2001; Murphy, 2000), and AI (Russell &
Norvig, 2003).

No matter how well the topics are explained in the lectures, we believe that
hands-on experience is essential in robotics education to help internalize the
learned concepts. This opinion motivated us to structure the course as one
hour of lectures followed by two hours of laboratory sessions where the
students apply the theory covered in the preceding lecture and immediately
experiment with the outcomes on the robots they design and build. To be
able to achieve such a rapid development and experimentation process, we
needed a hardware platform that is flexible enough to allow constructing
easily programmable robots with a wide spectrum of features.

We decided that the Lego Mindstorms NXT robotic kit (http://mindstorms.
lego.com/) was particularly suitable for using as the hardware platform of
the course since it enables creating sophisticated robots in a relatively short
amount of time, without requiring in-depth technical knowledge about
either electronics or mechanics. Furthermore, it is possible to program the
Lego Brick, which is the processing unit of the system, in Java using the
LeJOS open-source firmware (http://lejos.sourceforge.net/). This capability
made it even smoother for the students to begin programming the robots
almost instantly as Java is taught as one of the primary programming
languages in our curriculum. In addition to the reference books used for
the lectures, we also used several resources for the Lego Mindstorms kits
(Bagnall, 2007; Ferrari, 2002; Gasperi, Hurbain, & Hurbain, 2007).

In addition to the laboratory sessions focused on isolated applications of
the individual topics, we also designed term projects that would require the
integration and use of all the key concepts learned throughout the semester.
The term project is assigned after the essential topics are covered and the
students continue working on the project during the laboratory hours while
the advanced topics without laboratory applications are being covered. The
projects are designed in such a way to provide a competition environment

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

http://mindstorms.lego.com/
http://mindstorms.lego.com/
http://lejos.sourceforge.net/

Computer Science Education 371

that is based on a story and a set of rules to promote creative and smart
solutions.

3. Course syllabus
In this section, we elaborate on the contents of the weekly lectures and
the laboratory sessions. In the first 10 weeks we cover the essentials of
robotics, with a dedicated lab session for each topic. In the remaining three
weeks, we cover the advanced topics. These do not have lab sessions and the
students work on the term project. The theoretical material about the topics
are introduced in a manner for the students to comprehend just the basic
working knowledge about the issues without an in-depth exposition. The
course material can be found at http://robot.cmpe.boun.edu.tr/~cmpe434.

3.1. Week #1: introduction

The goal of the first week is to get the students acquainted with the general
terms and concepts in mobile robotics and artificial intelligence (AI), such
as various definitions of intelligence, the “agent” concept, environment
and agent types, brief history of robotics, the behaviour concept, the feed-
back control concept, manipulators vs. mobile robots, sensor and actuator
concepts, sources of uncertainty, and the three main questions of mobile
robotics, which are “Where am I?”, “Where am I going?” and “How should
I get there?”.

In the first lab session, the students are asked to form teams of two, and
each team is provided with a Lego Mindstorms NXT kit. They first build
the TaskBot (Figure 1) from CMU Robotics Academy (Carnegie Mellon
Robotics Academy, 2007), and learn how to use the Lego software for con-
structing simple programs by dragging and dropping basic programming
blocks.

Utilizing the sound sensor, the students program the TaskBot to go
forward or backward and change direction with the clapping sound. Next,
they enhance the robot’s sensing and actuation capabilities by the addition
of a bumper and implementation of rotation movements. In its final config-
uration, the robot can wander around and react to collisions in addition to
the clapping sound.

3.2. Week #2: programming Lego NXT with Java

The goal of the second week is to introduce the LeJOS Java programming
environment. In the lecture, a brief overview of the LeJOS environment and
the API for accessing the sensors and actuators as well as programming
behaviours are given, and the limitations of the LeJOS framework are
discussed.

In the lab session, the students are first asked to update the firmware of
their Lego Bricks to use LeJOS. Following this update, they test various

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

http://robot.cmpe.boun.edu.tr/~ cmpe434

372 H.L. Akın et al.

Figure 1. The TaskBot differential drive robot.

sample programs that come with the LeJOS environment, such as basic
sensor and actuator access, simple line following behaviour, and a controller
for differential drive steering. Finally, the behaviours programmed using the
Lego software in the previous laboratory session are re-implemented in Java.

3.3. Week #3: sensors and actuators

As opposed to the classical computer science understanding of I/O systems,
sensors and actuators have uncertainty associated with them that require
additional procedures to make them reliable. In this lecture, topics including
different sensing and actuation modalities, the notion of uncertainty in
sensing and action, sensor and actuator calibration, the difference between
sensing and perception, active and passive sensing, sensor fusion, the state
space concept, principles of motor operation, different types of motors,
torque–power relation, servo motor basics, battery types, power regulation
and the sense–think–act paradigm are briefly explained.

In order to demonstrate that the sensors and actuators do not behave
exactly the way that they are expected to due to uncertainty, in this lab
session, the students are asked to repeatedly measure the quantities reported
by the light, ultrasound, sound and touch sensors, and plot the results to
see if there is a deviation from the expected linear relationship. They are
also asked to establish a relation between the motor speeds applied and the
observed linear and rotational motion of the robot to have a preview of the
motion uncertainty of the robot.

3.4. Week #4: locomotion

There are numerous ways of making a robot move around with different
advantages and disadvantages. In this lecture, we briefly touch upon the
most popular locomotion architectures, and quickly go over topics such as
the effector and degree of freedom concepts, joints and links, holonomic,

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

Computer Science Education 373

non-holonomic, and redundant systems, pros and cons of different loco-
motion systems, static and dynamic stability concepts, common gait types
for legged locomotion, motion planning, forward and inverse kinemat-
ics, odometry and dead reckoning, detailed analysis of differential drive
systems, Ackermann steering, synchronous drive and omnidirectional drive
systems.

As a continuation from the previous lab session, in this session, odometry
calibration of the TaskBot is performed by the application of UMBmark
odometry calibration procedure (Borenstein, Feng, & Borenstein, 1996).
The students report the observed systematic and non-systematic errors as
well as the level of improvement before and after the calibration. The robot
is programmed to follow a 4 m × 4 m square trajectory several times both
in clockwise and in counterclockwise directions, and a motion model that
compensates for the odometry errors is constructed based on the observed
deviations from the desired path.

3.5. Week #5: control

In order to make the robot perform the way we want it to, we need to
control it in such a way to minimize the discrepancy between the desired
and the observed behaviour. In this lecture, we make an introduction to
the control theory by briefly explaining topics like open and closed loop
control concepts, step response concept, types of feedback control sys-
tems, detailed coverage of PID control and tuning PID controllers with
the Ziegler–Nichols method.

In the lab session, the students are asked to build a two wheeled
self-balancing robot. It uses a light sensor pointing downwards as its feed-
back mechanism which provides information about the tilt of the robot
inferred using the sensed light intensity. An example construction from
one of the groups is shown in Figure 2. After constructing the robot, the
students try to tune a PID controller to keep the robot balanced for as long
as possible. The bonus part of this lab session is to also make the robot
move forward or backward, and perform turning motions in a controlled
manner.

Figure 2. An example self-balancing robot construction.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

374 H.L. Akın et al.

3.6. Week #6: reactive architectures

A mobile robot does not always have to be very intelligent in order to
exhibit sophisticated behaviours. In this lecture, we present a generic view of
robot control architectures, a brief description of deliberative architectures
and their problems, principles of reactive control, Braitenberg vehicles,
hybrid control, three-layer architectures, and pros and cons of the hybrid
approaches.

The aim of this lab session is to demonstrate to the students that complex
behaviors can be obtained by using very primitive sensory-motor couplings.
The students are asked to implement the first four vehicles from Valentino
Braitenberg’s book “Vehicles” (Braitenberg, 1986), and a vehicle of their
own design.

3.7. Week #7: behaviour based architectures

Continuing from the previous week’s lecture, we present the definition of be-
haviour, emergent and reactive behaviour concepts, behaviours in animals,
behaviour vs. action, representation of behaviours, properties of behaviours,
behaviour notations, assembling behaviours, evaluating behaviour-based
architectures and the Subsumption Architecture (Brooks, 1986).

In the lab session, the students first build a robot that is equipped with
a stationary light sensor and an ultrasonic sensor on a turning turret to be
used for obstacle detection. They are then asked to develop a behaviour
scheme using the Subsumption Architecture for seeking a light source and
making the robot go towards it while avoiding obstacles in the environment.

3.8. Week #8: localization

Knowing its whereabouts in the world is crucial for a mobile robot in
order to perform goal-directed tasks. However, the uncertainty in sensing
and actuation imposes several difficulties with inferring the robot’s pose
accurately. In this lecture, we briefly explain typical problems in localiza-
tion, the difference between active and passive localization, classification of
localization algorithms, triangulation, probabilistic localization methods,
Markov localization, Kalman localization, and Monte Carlo and Reverse
Monte Carlo localization algorithms.

In the lab session, the students develop observation and motion models
for a Monte-Carlo Localization implementation (Thrun, Burgard, & Fox,
2005). The students use a wireless monitoring tool to observe the perfor-
mance of the developed self-localization system. As the robot moves along
a line, it continuously checks the side-facing ultrasonic sensor readings in
addition to computing its displacement since the last odometry reading to
update the belief values of individual hypotheses on its possible locations

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

Computer Science Education 375

Figure 3. A localization experiment setup.

Figure 4. A snapshot from the visualization tool used for testing the localization
algorithm.

(i.e. particles). The setup is given in Figure 3, and a sample screenshot from
the remote-monitoring tool is shown in Figure 4. In the figure, the blue
lines denote the map, individual hypotheses on the location of the robot are
represented as thin red lines, and the inferred position is represented with a
green line.

3.9. Week #9: path planning

Having an idea about its own position and where to go do not help much
to the robot without a way of connecting these two points in a safe and
efficient manner. Depending on the application, different metrics, such as
the path length and the average distance from the obstacles, can be used for

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

376 H.L. Akın et al.

Figure 5. An example robot design for the Bug algorithms.

deciding how to connect the start and end positions. In this week’s lecture,
we present definitions of the path-planning problem, configuration space,
complexity of path planning, Bug algorithms, visibility graphs, general-
ized Voronoi graphs, grid-based methods and cell decomposition, potential
fields, sampling-based methods, probabilistic roadmaps (PRM) and rapidly
exploring random trees (RRT).

In the lab session, the students implement the Bug1 and Bug2 algorithms
(Lumelsky & Stepanov, 1987) for a robot that tries to reach a light source
while avoiding the obstacles on its way. The light source is visible to the robot
from anywhere in the environment; however, the direct path is obstructed.
The robot runs the Bug algorithms to follow the walls of the obstacle until
its path intersects with the line that connects the starting point and the light
source. A sample robot designed for this lab by students is given in Figure 5.

3.10. Week #10: mapping

In situations where a map of the environment to be used for self-localization
purposes is not available, the robot has to build one by itself. In this lecture,
after briefly discussing why mapping is needed, we present environment
modelling and representation methods, problems in mapping, continuous
representation, single- and multi-hypothesis approaches, exact, fixed, and
adaptive cell decomposition methods, occupancy grids, topological decom-
position, simultaneous localization and mapping (SLAM) problem and
applications of SLAM.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

Computer Science Education 377

Figure 6. A sample map making experiment configuration and the generated map.

In the lab session, the students are asked to build a robot base with an
ultrasonic distance sensor. The robot is programmed to traverse a square
path of 1 m × 1 m with its distance sensor facing outwards. Various objects
are placed around the square trajectory, and the students are asked to
develop a method for building a map of the environment using the estimated
position of the robot on the square trajectory, and the distance reported by
the ultrasonic sensor at that position. A sample set-up and the generated
map are given in Figure 6.

3.11. Week #11: learning

Equipping robots with the ability to improve their performance through
learning not only saves human developers from programming every
detail, but may also be necessary for problems without a known algorithmic
solution. We start this lecture by giving the definitions of learning and ma-
chine learning. We then quickly go over topics such as supervised learning,
unsupervised learning, reinforcement learning (RL) systems, reward and
value functions for RL systems, exploration–exploitation dilemma, Markov
Decision Processes (MDPs), Markov property, policy, reward, and value
functions for MDPs, policy evaluation, Monte Carlo sampling, temporal
difference (TD) learning, Q-Learning, policy gradient learning, Poincare
map-based RL and example applications of learning. Starting from this
week, the lab sessions are utilized by the students to work on their term
projects.

3.12. Week #12: multirobot systems

Using multiple robots to perform a task has two potential advantages. First,
the overall execution performance can be improved if the task at hand can
be divided into proper subtasks that can be performed by different robots.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

378 H.L. Akın et al.

Second, with a proper design, the introduced redundancy can make the
system more robust against possible failures. In this lecture, we cover topics
including the terminology in multirobot systems, classification of
multirobot systems according to interaction, biological inspirations, motion
coordination, communication in multirobot systems, cooperative object
transport and manipulation, reconfigurable robotics, multirobot localiza-
tion, mapping and exploration, multirobot learning, swarming/flocking/
schooling, advantages and disadvantages of multirobot systems, types of
collective systems and multirobot domains, competitive domains, control
approaches, centralized vs. distributed control, reactive, behaviour based,
intentional, and hybrid approaches, taxonomies for multirobot systems and
market-based task allocation methods with robot soccer as an example
application domain.

3.13. Week #13: social robotics

Depending on the application, robots may need to cohabitate with humans
in certain environments, such as factories (as co-workers), hospitals (as
nurses) and houses (as servants). In those cases, it becomes necessary for
robots to be able to form social bonds with humans through various modali-
ties of communication and get socially accepted by them. This lecture covers
the definition of social robots, social robot classes and forms, common de-
sign problems of socially interactive robots, interaction modalities, artificial
emotions, user models, robot social learning, imitation, and examples of
potential applications.

4. Term projects
To solidify the hands-on experience gained in laboratory sessions, a
relatively complex-term project with a theme is assigned to the students, and
they are expected to utilize all the relevant scientific methods and engineer-
ing practices that they have learned throughout the course to complete the
project. The term project includes simplified versions of the main problems
in the field of robotics and AI, some of which are inference, path planning,
map making, perception and navigation. The remainder of this section
describes in detail the six-term project themes that have been assigned since
2007.

4.1. Wumpus World

In this project, the students are asked to implement a simplified and modified
version of the famous Wumpus World problem (Russell & Norvig, 2003).
The simplified Wumpus World is a 5×5 grid of squares surrounded by walls.
The grid cells may be empty, or may contain a bottomless pit, a stinky beast

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

Computer Science Education 379

Figure 7. A snapshot from the simulator for the Wumpus World problem.

called Wumpus or a chest of gold. The goal of the robot is to find the gold
and return to the starting position without falling into a pit or being eaten
by the Wumpus. The Wumpus creates a stench percept, and the pit creates a
breeze in the adjacent cells while the gold creates a glitter percept in its own
cell. The stench, breeze and glitter percepts are represented with different
colours and sensed via a light sensor, whilst the bump percept is sensed
through a bump sensor.

A custom made Wumpus World simulator (Figure 7) written in Java is
provided to isolate the development of the AI part from the mechanical
design and keep the students concentrated on the strategy part first. In
parallel to the software development, the students were asked to develop the
necessary low level functionality required to execute the sensing and action
functions that the simulated agent uses. The selection of Java language for
simulator development enabled the students to run their agent software on
the real robot without any modifications.

4.2. Rescue the princess

In this project, the students are asked to design a convertible robot that can
both navigate a maze and climb a pole. The goal is to find the kidnapped
“princess” being kept in an underground dungeon, and help her out by
climbing a pole. The dungeon world is implemented as a rectangular area
consisting of square cells. The area is surrounded by walls and each square
can either be empty or contain only one type of object. The valid objects
set consists of the obstacle (no specific colour information), the pole (in
yellow) and the princess (in blue). The students could use extra sensors but
they were limited to using three motors and only one Lego brick. The initial
position of the robot was determined randomly and was the same for all

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

380 H.L. Akın et al.

Figure 8. An example robot design for the Rescue the Princess project. The robot used for
navigating and searching for the princess on the floor (left) could easily be modified into a
pole climber after finding the princess (right).

student groups. Figure 8 shows one design by the students that could easily
be modified into a pole climber.

4.3. Mouse in the maze

The objective of this project is to build a robot, namely a “Micromouse”,
which is expected to negotiate a specified maze in the shortest time.
Micromouse is an engineering design competition created by IEEE where
small robotic mice solve a 16 × 16 maze. The mice are completely
autonomous robots that must find their way from a predetermined starting
position to the central area of the maze unaided. A micro mouse needs to
keep track of where it is, discover walls as it explores, build a map of the
maze, and detect when it reaches the goal. Having reached the goal, the
mouse will typically perform additional searches of the maze until it finds
an optimal route from the start to the center. Once the optimal route is
found, the mouse will run that route in the shortest possible time.

In order to simplify the project we resized the original maze to 8 × 8
squares of size 33 cm × 33 cm each. At the center of the maze is a large
opening that is composed of 4 unit squares. This central square is the
destination and is marked with a different colour. A snapshot from the
maze setup is given in Figure 9.

4.4. Search and rescue

The objective of this project is to build a search and rescue robot to operate
in a maze, representing the debris after a disaster. The debris is modelled as a
discrete world consisting of grids, and the victims with different conditions
(trapped, wounded or dead) are represented by different A5-sized colour

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

Computer Science Education 381

Figure 9. A snapshot from the downscaled “Micromouse” maze setup.

patches on the walls. The students are asked to develop a search and rescue
robot to explore the maze and build a map of it on which the victims are
marked. The robot starts exploring the map from one of the four corners of
the maze, and it should return to its starting position once the exploration
is complete. The final map should be communicated over Bluetooth and
displayed on a host PC.

4.5. Treasure hunter

The goal of this project is to build a treasure hunter robot to operate in a
room-based environment with 2 floors, constructed based on a RoboCup
Junior Rescue B competition field (http://rcj.robocup.org/rcj2011/rescueB_
2011.pdf) without the high contrast lines in the original set-up for making
navigation easier (Figure 10). The environment is modelled as a discrete
world consisting of grid cells whose dimensions are 30×30 cm. The grid cells
that contain treasures of different classes (gold, silver or bronze), treasure
boxes and traps are represented by different A5-sized colour patches on
the floors. A treasure box is used to store the treasures collected. When the
robot moves into a trap, all treasures collected by the robot that have not yet
been put into the treasure box disappear. If the robot collects a treasure, the
corresponding grid cell is reloaded with the same type of treasure after 3 min.
The goal is to collect as much treasure as possible. The robot starts exploring
the map from one of the four corners of the first floor. It should communicate
its actions like collecting and dropping treasures through different sounds.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

http://rcj.robocup.org/rcj2011/rescueB_2011.pdf
http://rcj.robocup.org/rcj2011/rescueB_2011.pdf

382 H.L. Akın et al.

Figure 10. An example robot design for the Treasure Hunter project with the competition
field in the background.

Furthermore, a visualization software should be developed to display the
final map and the collected treasures on a host PC connected over Bluetooth.

4.6. Dustman

The objective of this project is to build a “dustman” robot to operate in a
room-based environment with 2 floors. The physical environment is similar
to the one used in the “Treasure Hunter” project defined in Section 4.5.
Although most of the grid cells are empty and have white floors, some of
them are dirty with objects. A trash bin, which is represented by a colour
patch on the floor, is used to store the garbage.

Figure 11. An example robot design for the Dustman project.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

Computer Science Education 383

The students are expected to design and develop a robot to explore and
clean the environment as much as possible (Figure 11). The robot starts
exploring the map from one of the four corners of the first floor. The
developed software should allow visualization of the final map and the
cleaned cells on a host PC using the data received from the robot over
Bluetooth.

5. Evaluation
5.1. Evaluating student progress

We monitor the students’ progress weekly through live demos and technical
reports summarizing the laboratory work done in the previous week. We
ask the students to address several issues in their reports such as the tech-
nical challenges faced, the methods used to overcome these difficulties, the
design choices for both software and hardware, and the rationale behind
these choices. Similarly, the term project is also evaluated through technical
reports and a live final demo. After the assignment of the term project,
the student teams first prepare a design document where they speculate
about their design decisions along with the justifications of these decisions.
At the end of the project, they also submit a final report explaining in
detail both the hardware and the software of the robot they have developed,
accompanied by a live demo. We also hold a competition during the final
demos (Figure 12) and award the teams with outstanding performance with

Figure 12. Students preparing for the final demo and competition.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

384 H.L. Akın et al.

Table 1. Course evaluation.

Evaluation questions (5: Agree, 1: Disagree) 2011 2012

Clarity of course objectives 4.58 4.69
Design of the course 4.83 4.62
Course materials, e.g. textbooks, handouts and e-materials 4.75 4.38
Effectiveness of course requirements and assignments 4.75 4.62
Overall effectiveness of the course 4.58 4.54
Explanations, use of examples, illustrations and activities 4.25 4.54
Paying attention to students’ level of comprehension 4.50 4.00
Encouragement of student participation in class 4.67 4.08
Effective use of class time 4.75 4.38
Returning graded exams and assignments without delay 4.75 3.85
Fair grading of student performance 5.00 4.38
Fair handling of objections to grades 4.83 4.23
Availability to help outside of class time (e.g. office hours and appointments) 4.67 4.23
Overall effectiveness of the instructor 4.83 4.31
I would choose to take another course with the same instructor 4.67 4.31

bonus points. The theoretical part of the lecture is evaluated through a
standard paper-based written exam. The grading is as follows:

• Labs 25%
• Term Project 50%
• Final Exam 25%

For the first three years, we collected the weekly reports as well as the
term project reports on paper. In 2010, we switched to an online feedback
environment where we utilized our wiki-based course web page for collecting
and evaluating progress reports. Seeing the designed system in action plays a
very important role when evaluating robotic systems; therefore, the positive
impact of heavily utilizing web technologies were huge, as the new feedback
environment enabled the students to easily embed videos they record outside
the laboratory sessions. Another side benefit of this web-based feedback
environment is the accumulation of a significant amount of media (videos
and pictures) over the semester for archival purposes.

5.2. Student evaluation of the course

For each course offered in Boğaziçi University, during the final weeks of
each semester, the students fill an optional online course evaluation form.
There are 15 questions for the evaluation of the course and the instructor.
The students are expected to give an integer score between 1 and 5 (highest)
for each question, and can also provide written comments about the course
and the instructor.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

Computer Science Education 385

Since the questions in the form changed over the years, in order to
give a comparison we present the questions for the last two years and
the student responses (average) in Table 1. Despite the abundance of the
covered material and the demanding workload, since 2007, this course has
been consistently rated in the top five among the Department of Computer
Engineering undergraduate courses, some years even taking the first place.
The students show their appreciation also in their written comments. Some
examples are: “This is an excellent course with the subject, instructor and
teaching assistant”, “I enjoyed this lecture a lot and I recommend it to all
my peers”, and “It is a great course to begin robotics”.

6. Conclusions
In this paper, we present an elective undergraduate introductory robotics
course that is being offered in the Department of Computer Engineering
at Boğaziçi University since 2007. Our course started as a special topics
course and as a result of the great interest and positive feedback of the
students, it became a regular course in 2011. Also for the first time in 2011,
we increased the student quota to twice that of the initially planned one to
meet the student demand.

Our curriculum and laboratory design proved itself to be quite successful
as we consistently received very positive feedback from the students. Many
veteran students later have opted to take undergraduate theses based on
autonomous robots and some even continued to graduate study in this
field. As a consequence, the content of the course has almost stayed the
same with the exception of introducing a new theme for the term projects
each year. We also think that Lego Mindstorms is an excellent platform to
be used in an introductory robotics course as it enables rapid development
of fairly complex robotic systems, especially when combined with a widely
popular language like Java.

Encouraged by the success of this course, we are planning to extend both
the laboratory sessions and the term projects to cover more advanced topics
like multi-robot systems, vision based navigation and mapping, and learn-
ing, and write a textbook with very detailed descriptions of the laboratory
sessions in addition to the theoretical material to make it easy to replicate
for other instructors and institutions. Meanwhile, we would be glad to share
our experiences with any interested parties.

References
Akın, H. L. (2005). Managing an autonomous robot team: The Cerberus team case study.

International Journal of Human-friendly Welfare Robotic Systems, 6, 35–40.
Bagnall, B. (2007). Maximum Lego NXT: Building robots with java brains. Winnipeg: Variant

Press.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

386 H.L. Akın et al.

Behrens, A., Atorf, L., Schwann, R., Neumann, B., Schnitzler, R., Balle, J., ... Aach,
T. (2010). MATLAB meets LEGO mindstorms freshman introduction course into
practical engineering. IEEE Transactions on Education, 53, 306–317.

Borenstein, J., Feng, L., & Borenstein, C. J. (1996). Measurement and correction of
systematic odometry errors in mobile robots. IEEE Transactions on Robotics and
Automation, 12, 869–880.

Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. Cambridge, MA: The
MIT Press.

Brandt, A., & Colton, M. (2008). Toys in the Classroom: LEGO MindStorms as an
Educational Haptics Platform. In symposium on Haptic interfaces for virtual environment
and teleoperator systems, 2008. (pp. 389–395). Reno, NV: Haptics.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2, 14–23.

Carnegie Mellon Robotics Academy. (2007). Retrieved from http://www.education.rec.ri.
cmu.edu

Cliburn, D. (2006). Experiences with the LEGO Mindstorms throughout the
Undergraduate Computer Science Curriculum. In 36th Annual Frontiers in Education
Conference (pp. 1–6). San Diego, CA.

Dudek, G., & Jenkin, M. (2000). Computational principles of mobile robotics. New York,
NY: Cambridge University Press.

Ferrari, M. (2002). Building robots with Lego Mindstorms. Burlington, MA: Syngress Pub.
Gasperi, M., Hurbain, P. E., & Hurbain, I. L. (2007). Extreme NXT: Extending the LEGO

MINDSTORMS NXT to the next level. Berkeley, CA: Apress.
Gómez-de Gabriel, J. M., Mandow, A., Fernández-Lozano, J., & García-Cerezo, A. J.

(2011). Using LEGO NXT mobile robots with LabVIEW for undergraduate courses
on mechatronics. IEEE Transactions on Education, 54, 41–47.

Jaksic, N., & Spencer, D. (2008). A multidisciplinary laboratory course: Robotic design
and programming with Mindstorms. In 2008 ASEE Annual Conference & Exposition
Pittsburgh, PA.

Jung, S. (2013). Experiences in developing an experimental robotics course program for
undergraduate education. IEEE Transactions on Education, 56, 129–136.

Kitano, H., Asada, M., Noda, I., & Matsubara, H. (1998). RoboCup: Robot World Cup.
IEEE Robotics Automation Magazine, 5, 30–36.

Lew, M. W., Horton, T. B. & Sherriff, M. S. (2010). Using LEGO MINDSTORMS NXT
and LEJOS in an advanced software engineering course. In 23rd IEEE Conference on
Software Engineering Education and Training (CSEE & T) (pp. 121–128). Pittsburgh,
PA.

Lumelsky, V., & Stepanov, A. (1987). Path-planning strategies for a point mobile automaton
moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2, 403–430.

Martin, F. G. (2001). Robotic explorations: A hands-on introduction to engineering.
Englewood Cliffs, NJ: Prentice Hall.

Mataric, M. (2004). Robotics education for all ages. In AAAI Spring Symposium on
accessible, hands-on AI and robotics education. Palo Alto, CA.

Mataric, M. (2007). The robotics primer. Cambridge, MA: MIT Press.
Murphy, R. R. (2000). An introduction to AI robotics. Cambridge, MA: MIT Press.
Ranganathan, P., Schultz, R. & Mardani, M. (2008). Use of LEGO NXT Mindstorms brick

in engineering education. In Proceedings of the 2008 ASEE North Midwest Sectional
Conference. Tulsa, OK.

Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach. Englewood Cliffs,
NJ: Prentice Hall.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics (intelligent robotics and
autonomous agents). Cambridge, MA: The MIT Press.

Williams, A. (2003). The qualitative impact of using LEGO MINDSTORMS robots to
teach computer engineering. IEEE Transactions on Education, 46, 206.

Zhang, H., Zheng, W., Chen, S., Zhang, J., Wang, W., & Zong, G. (2007). Flexible
educational robotic system for a practical course. In IEEE International Conference
on Integration Technology, 2007. ICIT ’07 (pp. 691–696). Shenzhen.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

9:
06

 0
3

M
ar

ch
 2

01
6

http://www.education.rec.ri.cmu.edu
http://www.education.rec.ri.cmu.edu

	Abstract
	1 Introduction
	2 Course description
	3 Course syllabus
	3.1 Week #1: introduction
	3.2 Week #2: programming Lego NXT with Java
	3.3 Week #3: sensors and actuators
	3.4 Week #4: locomotion
	3.5 Week #5: control
	3.6 Week #6: reactive architectures
	3.7 Week #7: behaviour based architectures
	3.8 Week #8: localization
	3.9 Week #9: path planning
	3.10 Week #10: mapping
	3.11 Week #11: learning
	3.12 Week #12: multirobot systems
	3.13 Week #13: social robotics

	4 Term projects
	4.1 Wumpus World
	4.2 Rescue the princess
	4.3 Mouse in the maze
	4.4 Search and rescue
	4.5 Treasure hunter
	4.6 Dustman

	5 Evaluation
	5.1 Evaluating student progress
	5.2 Student evaluation of the course

	6 Conclusions
	References

