
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=rhep14

Download by: [b-on: Biblioteca do conhecimento online UL] Date: 03 March 2016, At: 08:40

Innovation in Teaching and Learning in Information and
Computer Sciences

ISSN: (Print) 1473-7507 (Online) Journal homepage: http://www.tandfonline.com/loi/rhep14

Introductory Problem Solving and Programming:
Robotics Versus Traditional Approaches

Amanda Oddie, Paul Hazlewood, Stewart Blakeway & Alma Whitfield

To cite this article: Amanda Oddie, Paul Hazlewood, Stewart Blakeway & Alma Whitfield (2010)
Introductory Problem Solving and Programming: Robotics Versus Traditional Approaches,
Innovation in Teaching and Learning in Information and Computer Sciences, 9:2, 1-11

To link to this article: http://dx.doi.org/10.11120/ital.2010.09020011

© 2011 Higher Education Academy

Published online: 15 Dec 2015.

Submit your article to this journal

Article views: 17

View related articles

http://www.tandfonline.com/action/journalInformation?journalCode=rhep14
http://www.tandfonline.com/loi/rhep14
http://dx.doi.org/10.11120/ital.2010.09020011
http://www.tandfonline.com/action/authorSubmission?journalCode=rhep14&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=rhep14&page=instructions
http://www.tandfonline.com/doi/mlt/10.11120/ital.2010.09020011
http://www.tandfonline.com/doi/mlt/10.11120/ital.2010.09020011

INTRODUCTORY PROBLEM SOLVING AND PROGRAMMING:
ROBOTICS VERSUS TRADITIONAL APPROACHES

Amanda Oddie, Paul Hazlewood, Stewart Blakeway, Alma Whitfield

Department of Computer Science
Liverpool Hope University

Hope Park, Liverpool, L16 9JD
 oddiea@hope.ac.uk, hazlewp@hope.ac.uk, blakews@hope.ac.uk, whitfia@hope.ac.uk

ABSTRACT
The ability to solve problems is one of the key skills that computing students require in order to learn
programming. However they find this a challenge. The Computer Science Department at Liverpool Hope
recruits students to two programmes, BSc. Information Technology and BSc Computing. Both programmes
have used bespoke software and text books to guide the teaching and learning of programming. This paper
examines how innovative technologies such as the use of robotics can facilitate the students’ understanding
and application of problem solving and programming. It discusses and builds on previous initiatives
undertaken at Liverpool Hope.

Keywords
Problem solving skills, robotics, teaching programming, Flowcode, innovative, programming text books,
constructivist, instructional design, blended learning.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the contribution of Years 1 and 2 students (Academic Year 2006-2007
and 2009-2010) in response to the questionnaire on the learning and teaching of programming. Student
comments remain anonymous and verbatim, and permissions have been given to publish. The authors also
acknowledge the contribution made by Mark Barrett-Baxendale in the development of the research
questionnaire.

1. INTRODUCTION
Students now entering university to undertake undergraduate Computing and Information Technology (IT)
programmes are a more diverse group (Jenkins and Davy, 2001). This could be attributed to various factors
such as:

• the decline in mathematical ability (Herterich, 2004) and symbolic reasoning;
• the fact that some IT degree students do not view programming as being central to their programme;
• the clear differentiation between A level Computing and Information Technology qualifications means

that some students entering undergraduate courses may not even see themselves as programmers;
• students consider themselves to be “digital natives” and feel that they are already computer literate

due to their exposure to computers, the Internet and social networking sites;
• many students have no experience of problem solving or programming and find these activities

difficult.

1.1 Programming
Problem solving and programming concepts are seen as difficult and abstract skills to learn with little to relate
them to things familiar to most students. Programming languages taught are seen as obstacles to
engagement and interest in computing subjects (McCracken et al., 2001). It has been argued that students
have difficulties with programming if they lack confidence in their ability to use symbolic reasoning (McDermott
et al., 2007).
Traditional approaches to learning programming include identifying and understanding the syntax and
structural elements of the chosen language then trying to combine these with techniques and understanding

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

of structured problem solving. This methodology is fairly successful if students have had experience of
problem solving and symbolic reasoning (usually obtained through exposure to mathematics). However as
indicated above students entering into undergraduate Computing and IT courses are a more diverse group.
Students at Liverpool Hope entering on to the BSc Computing programme are required to have a mathematics
qualification (a minimum of GCSE grade C) whereas those entering on to Information Technology Programme
are not.

1.2 Problem Solving
Problem solving is regarded as an important stage in the development of a program. It is often considered a
difficult skill to learn. Jenkins (2002) states that problem solving is a complex process which requires various
skills. The problem has to be identified and understood. Whitfield et al. (2007) state that problem solving is a
complex process which requires various skills. Programming is a product of the solution to a particular
problem. In order to be able to program, the problem first must be understood and often dissected. In
computing, students need to translate the algorithm for the solution into code. Dijkstra (1989) discusses
programming with its abstract nature as not being easily related to the familiar or existing knowledge.
Oldehoeft and Roman (1977) consider that students need to understand problem solving methodologies at the
basic level if they are to progress as programmers. Beaumont and Fox (2003) also suggest problem solving is
a non trivial process that requires many skills including the identification of the central issues; recognition of
relationships, familiar situations and patterns.
Before trying to teach programming to students it is important for them to be able to identify a problem and
understand the steps to be taken to solve it. If these steps are ignored it can lead to poorly defined solutions
or programs that are created through trial and error – “hacking”. A traditional approach is taken to lead
students through the steps of structured problem solving, flow charts and trace tables identifying sequence,
selection and repetition, in order to create a solution that can be formalised as an algorithm presented in
pseudo code. The algorithm can then be translated into a program (Burton and Bruhn, 2003).
Although the theory is important, research and ongoing developments show that the use of gaming (Chang,
2008), robotics (e.g. Flowers, 2003; Turner and Hill, 2007; Gandy, 2010), and visual programming tools such
as Alice (Cooper et al. 2003; Alice, 2010) to “hide” the mechanics/technical aspects of problem solving, and
programming has the potential to successfully engage learners through interesting activities. Although often
focussed on the engagement in programming tasks, the research does suggest that being able to visualise
(and predict) what is happening encourages a better understanding of, and creativity in, problem solving. One
could say that the technology is being used as a “mindtool”. According to Jonassen (2000), when students are
using technology as mindtools they become creators of the knowledge that they are learning (in line with
constructivist principles). This in turn requires them to think harder about the knowledge being learned.
Importantly, students are not as reliant on the teacher to interpret problems for them and so are constructing
their understanding and views within the framework of the course and the tasks set.

1.3 Liverpool Hope Students
Learning to program is a challenge that all Computer Science students face; the difficulties being with syntax
and the strict structure of the language. An additional constraint is the prior knowledge that the students have
when beginning University as well as their expectations. Computer Science students at Liverpool Hope are
equipped with at least a grade C in GCSE mathematics. This is seen as important because, although not
related to programming, mathematics does begin to address the issues associated with problem solving skills.
This is backed up by Herterich (2004) who suggests that the decline in mathematical ability, specifically in
analytical and logical reasoning, problem solving skills and algebraic manipulation, has had adverse
implications in Computing disciplines and that this has led to problems with formal manipulation of symbols
(Programming) and multi-step processes (Algorithmic Design and Data Structures).
 Liverpool Hope University has a strong Education degree programme and many students apply for QTS
(Qualified Teaching Status). Although these students are studying to become teachers they are also required
to study in another subject, one of the choices they have being Information Technology (IT). These students
are committed to their Education degree as that is their chosen career, however the commitment on the IT
course is sometimes less prevalent. Similarities to this situation are described by Anderson et al. (2003) in
relation to Liberal Arts students. Where students do not see programming as an essential core of their studies
they will not be motivated enough to devote sufficient time to the study. The IT course is not restricted to
Education students and is often more popular in numbers than the Computer Science degree. Thus, at
Liverpool Hope we have to meet the learning requirements of students who (a) expect programming to be part
of their Computer Science degree, (b) take IT in a combination of their primary degree (QTS), or (c) those who
do not meet the requirements of the Computer Science degree but are offered a place on the IT degree, all of

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

whom perceive programming with different importance, have different expectations, different experience and
different commitments.
Previous research carried out at Liverpool Hope University (Whitfield et al., 2007) discussed how the use of
bespoke software and tailored course materials was used to support students who were new to problem
solving and programming. This was grounded in a traditional understanding of problem solving principles and
looked at moving to a visual and more constructivist approach to learning. Although successful there were still
some who struggled when errors were discovered in their solutions, had difficulty identifying other possible
solutions and struggled when presented with new problem scenarios. This paper builds on these experiences
and explores the use and efficacy of robotics in the first year programming curriculum.

2. ROBOTICS
Research in this area has demonstrated that the use of robotics to teach programming can be very effective.
Lawhead et al. (2003) stated that robots “…provide entry level programming students with a physical model to
visually demonstrate concepts” and “the most important benefit of using ROBOTS in teaching introductory
courses is the focus provided on learning language independent, persistent truths about programming and
programming techniques”. Turner and Hill (2007) found that when using robotics there was an improvement in
grades and that there was a positive response from students stemming from the benefit that the use of robots
provided a more tangible way of visualising the outcome of their programs. This is supported by Doswell
(2006) who stated that “robotics provides students with the opportunity to test the results of abstract design
concepts through concrete, hands-on robotic manipulation”. Gandy (2010) suggested that “the robot enables
quite complicated and interesting actions to be performed using very basic code structures. It was felt that this
makes it an ideal vehicle for assisting in the teaching of basic programming”.
Generally research has shown that robotics is beneficial for the teaching of programming in a number of ways.
It can:

• engage all students in core tasks whilst providing opportunities for more advanced students;
• help to mitigate the abstract nature of programming (Dijkstra 1989) by providing a richer tangible real

world environment for seeing feedback;
• encourage experimentation and exploration e.g. use of sensors;
• provide visualisations of implementations of solutions to problems;
• offer a real world environment for learning about programming concepts and designing more robust

code e.g. do not want robot to fall off the work table, collision with walls;
• learning vocabulary of programming in an interesting way.

3. TEACHING MATERIALS
Various textbooks, software and resources are used to support the programming courses. The Computing
Fundamentals course (BSc Computing programme) uses the same core structure for teaching materials as
the Computer Concepts course (BSc Information Technology programme) with some changes and variations
that are discussed below. These changes were made to take into account the higher ability level of these
students and the different programme requirements.

3.1 Text Books
Many courses at Liverpool Hope adopt textbooks that are required for study as part of a course. While
textbooks can be invaluable, it has been observed that often they are not entirely specific for the purpose of a
course. This is especially apparent for first year courses at Liverpool Hope. Therefore, textbooks were created
internally so that they were specifically tailored for the first year course. Bennedsen et al. (2005) describe the
usefulness of published text books as limited to the delivery of the finished product but not for the
development process. Programming text books tend to be easy to understand at the beginning, developing
very quickly into a complexity that demands a much higher level of understanding from students.
The advantages in this approach are that with in-house publications students only pay for the copying of the
book and not the high price of a commercial publication. Students studying courses at Liverpool Hope felt that
text books did not focus on their specific learning process. This has been incorporated into the internally
created books where the pace and complexity for the recruited student is better considered. Such internally
created books are freely available on the website and as problems are encountered with the texts, they can be
immediately updated. There are, however, disadvantages, for example, the amount of time required by staff
in order to create and review the in-house text books.

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

Computing Fundamentals made use of both in house textbooks that were created for the course which were
specifically tailored to focus on the C programming techniques and concepts the students were required to
learn. It was recognised that some programming text books did not address the requirement of the students.
However, a programming reference book, “The C Programming Language, 2nd ed.,” (Brian W. Kernighan and
Dennis Ritchie), was considered to be a useful resource for supplementing and furthering understanding of
the fundamental concepts presented in the in-house materials. Computer Concepts relied wholly on in-house
text books.

3.2 Online Support
The courses delivered by the Computer Science Department are supported using Moodle, the University’s
virtual learning environment (VLE). The VLE contains all the lectures, seminar activities, assessment details,
course schedule, software and any other information required for that course. The VLE provides functionality,
for example, online submission, discussion forums and message facilities. A Moodle course was set up for
Computing Fundamentals and Computer Concepts.

3.3 Software
Software used by our Computer Concepts students initially consisted of JavaTrainer and was discussed in
detail in Whitfield et al. (2007). It was decided that commercial Integrated Development Environments (IDEs)
such as NetBeans were initially too overwhelming in appearance, number of instruction sets (functions) and
complexity. Liverpool Hope IT students are introduced to JavaTrainer, an in-house development, which was
designed to allow students to understand programming in an uncomplicated forum.
The students experience JavaTrainer during the first part of their course and are introduced to a traditional
approach to programming. In the second part of the course they are introduced to object oriented concepts;
classes, objects, signatures, parameters, message passing, attributes and protocols. The students begin to
implement these concepts by programming in a freely available IDE, in this case BlueJ.
In the Computing Fundamentals course programs were implemented in C. Students developed their programs
in the Linux environment using a text editor and compiled their code at the command line using the gcc
compiler. It was a minimalist environment but it allowed students to focus on content and debugging with little
or no effort being expended on learning an IDE. Compiling from the command line presented the student with
the opportunity to understand the stages in the compilation process. (Memorising compilation commands did
not present a barrier as one could use the history feature of the CLI to recall the command.) The students later
used Dev C++ to give them experience of writing C programs in a Windows environment using an IDE.
The techniques described above are similar for both courses and depend upon teaching programming using
traditional methodologies. A new element was introduced into the Computing Fundamentals course which
made use of robotic buggies and Formula Flowcode.

4. DELIVERY OF THE COURSES
This section discusses how innovative methods have been developed to teach problem solving on the
Computing Concepts course and then discusses how the approach taken with Computing Fundamentals
builds upon this work in particular with the introduction of robotics.

4.1 Computing Concepts
Several approaches have been adopted to teach programming skills to the IT students. Students build upon
previous knowledge using the constructivist view of learning, as problem solving techniques are applied to
everyday problems. The examples adopted of baking a cake, charging cars to park for periods of time or
knitting a jumper which were introduced early in the course are discussed in Whitfield et al. (2007). The team
felt that basic examples were required to start the students on the journey of “logical reasoning and
algorithmic expression”. (Whitfield et al. 2007). Students are introduced to the three constructs of sequence,
selection and repetition and use conventional flowcharts in order to help them express their solution in
structured English. When the students begin to examine the components of a problem they understand, even
before they start coding, how to continue to refine their solution until they understand how this can be adapted
to high level programming language. At this stage the students are ready to begin tracing through algorithms
for testing and debugging, leading to the recording of the values of conditional statements and the values of
any variables within their solution. The first programming language that the students encounter is Java which
they experience through an in-house designed environment (Java Trainer). This was designed to enable
students to take the first steps on what will become more complex as they progress on to environments such
as BlueJ.
Java Trainer, although of limited functionality, is an application implemented in Visual Basic and written
specifically to teach the students the three problem solving constructs of sequence, selection and repetition

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

expressed in Java syntax. Students are introduced to loops, selection criteria and sequences of instruction
through visual representations instead of text based solutions. Experience has demonstrated that students
react better to visual representations of programming than text based solutions. Java Trainer has the
advantage of visual representation of programming similar to Pooples (Culwin, 2005) but with more flexibility.
The functions the students engage with include the facility to create a creature called PieEater which obeys
basic commands such as walk, turnleft, turnright, eatpie, penup, pendown.

Figure 1 Java Trainer showing code and grid with PieEater.

The student sets instructions which are reflected in the visual representation as the PieEater carries out the
instructions. Students learn to manoeuvre the creature, e.g. have the creature walk, turn, show a pen line with
the instructions pendown. Students experience loops, repetition and sequence, as well as predefined
variables which are also introduced at this stage, one example being clearahead which is true when PieEater
can walk forwards and false when it is facing a boundary wall.
As discussed in the earlier work presented by Whitfield et al. (2007), the Computing Concepts course has
tried to develop a more constructivist and visual approach to learning as can be seen with the PieEater
approach where students can create programs and instantly receive feedback watching the PieEater move
around the screen. This software also encourages the students to explore their solutions to investigate what
happens to the PieEater. However the students still struggle with some of the problem solving and
programming concepts. Although the in-house software is beneficial as a learning tool it is still limited to visual
feedback as there is only interaction with the computer and may be seen by some students as an IDE. The
remainder of this section highlights how robotics was introduced on the Computing Fundamentals course.

4.2 Computing Fundamentals
Traditionally the Computing Fundamentals course is based around C and in the past has been delivered using
an instructional design approach. This approach involved teaching the core concepts to the students, getting
the students to practice the task and then the students applying the techniques to various problems. However
this year it was decided to introduce the use of robotics at the start of the course using Flowcode Buggies
(Figure 2) and Formula Flowcode software (Matrix Multimedia, 2010). The rationale for this was three-fold:

1. It was seen as an ideal way of introducing the initial stages of programming; that is, problems solving,
algorithmic design, flow charts, and the basic components of sequence, selection and repetition.
These are all vital components and concepts that students must understand before becoming too
involved with the syntax and grammar of the language. The use of Flowcode supported this as it is a
graphical programming language.

2. To engage the students, as programming is seen as a difficult task by students.
3. To change the pedagogical approach of the course to provide a more constructivist environment in

which to learn. It was a perceptible shift from a predominately instructional approach to one that
includes more constructivism.

It can be argued that the course was adopting more of a “mindtools” approach with the use of robotic buggies
and Flowcode. This meant a move away from learning from technology as with the Computing Concepts
approach toward learning with the technology (the robotic buggies).

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

Flowcode 4 is an advanced graphical programming language for microcontrollers which currently supports
PICmicro, AVR and ARM series microcontrollers. The advantage of Flowcode is that it allows those with little
or no programming experience to create programs in minutes (Matrix Multimedia, 2010). The Computing
Fundamentals course used the Flowcode 4 in conjunction with formulae Flowcode robot vehicles. These
vehicles use the PICmicro microcontroller and are used to teach robotics and, in the case of Computer
Fundamentals, to deliver flow charting and problem solving techniques.

Figure 2 Formula Flowcode robotic vehicle (Matrix Multimedia, 2010)

The two wheeled robot uses the Flowcode graphical programming software (Figure 3). The advantage of
Formula Flowcode is that it is a visual language that allows programs to be built by dragging and dropping
icons which represent program structures and functions. This is beneficial to novice programmers as it allows
them to focus on the problem to be solved rather than struggle with the syntax of a language e.g. dragging a
block on the screen to represent a for loop is easier for many students than learning the structure and syntax
in C. It helps them to become more disciplined as it encourages the use of a simple develop, test, and try
model. Students develop the program, simulate its functionality on-screen and then click on a button to
download the program to the buggy via USB connection.
The buggy uses an advanced PICmicro 18 series microcontroller with internal precision motor controller
circuitry, has 3 infrared distance sensors, line following sensors on a separate circuit board, a buzzer, audio
level sensor, light sensor, two spare switch inputs and 8 user programmable LEDs (Formula Flowcode
Datasheet, 2007). These features were considered when designing the exercises to provide a range of
interesting problems ranging from the straight forward (e.g. flashing the LEDs) to the more complex (e.g.
maze solving problems that made use of the sensors).

Figure 3 Flowcode Interface

Programming is inherently difficult for many students to understand. As discussed, it was decided to use the
Flowcode to allow students to focus on the problem solving, algorithmic design and flow charting aspects of
programming before worrying about the syntax and grammar of the C language. During the first session of the
course the students were taught about algorithms and flowcharts. This provided the students with an

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

understanding of problem solving techniques. During the following session the students were introduced to
Flowcode and given a demonstration of the interface, how to construct a program (represented as a flow
chart), how to run this on the simulator and finally how to transfer the program to the buggy for testing. The
Flowcode simulator is illustrated in Figure 4.

Figure 4 Flowcode Simulator

After these initial sessions the students were presented with a series of portfolio questions and given three
weeks to complete them. The activities comprised of a set of compulsory core activities designed to provide
an understanding of flowcharting, problem solving and the core programming constructs of sequence,
selection and repetition along with some additional optional activities designed to be more complex and
develop a deeper understanding of problem solving and programming. A sample solution to one of the
portfolio questions is shown in Figure 5.

Figure 5 A Flowcode program

The philosophy of the course at this point was to employ a more constructivist approach to learning, allowing
the students to tackle the problems in different ways, to see what happened when the programs were tested
on the buggies and to explore and generate their own problems that they wished to solve. It was hoped that

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

this approach would engage the students and deepen their learning experience. According to Gagnon and
Collay (unknown) learners construct their own knowledge on the basis of interaction with their environment in
line with the following principles of constructivist learning:

• knowledge is physically constructed by learners who are involved in active learning;
• knowledge is symbolically constructed by learners who are making their own representations of

action;
• knowledge is socially constructed by learners who convey their meaning to others;
• knowledge is theoretically constructed by learners who try to explain things they do not completely

understand. (Gagnon and Collay, unknown).

The students were to use this experience to help with the remainder of the course which was delivered using
the more traditional instructional approaches of lectures on core programming theory, followed by activities to
practice and appropriate assessments.

5. ANALYSIS
Feedback and evidence was gathered during the course using questionnaires, observations and staff student
liaison. This was used to assess the impact of the use of the Flowcode buggies.

5.1 Questionnaires
The questionnaires comprised of two sections. Section A was an area for students to write comments about
the use of buggies on the course with Section B set out as a series of statements against a 5 point scale
ranging from strongly disagree to strongly agree. Below are some of comments expressed in section A:

• “… very enjoyable and a good introduction to programming. Should definitely be carried on in future
years.”

• “I thought the buggy programming was a good introduction into how to set up code and how to give
instructions to a computer.”

• “It was a fun and interesting way to start learning programming.”
• “I enjoyed using the buggies. It helped me to gain some understanding of programming in a particular

way.”
• “Using the buggies was an interesting introduction into programming which wasn’t too difficult to

understand. All in all it was a useful and enjoyable start to the course which allowed us to actually
program without prior knowledge and to learn the format of programming in the process.”

• “I really enjoyed using the buggies. I found them a simple and more interesting way of introducing us
to programming. I understood how to work the drag and drop functions and testing programs out.
Using the actual buggies was all in all a fun way to program. I think using these next year would be
great for next year’s students because if they have never programmed before they may be able to
understand the logic of programming by using buggies and Flowcode.”

• “It would beneficial to have more buggies available.”

Below are the responses to the statements used in Section B. The percentages show the students who
selected agree or strongly agree to the statements. None of the students ticked disagree or strongly disagree
for any of the statements.
The buggies were a good introduction to programming 91%
I enjoyed using the buggies 100%
The software was easy to use 100%
The buggies helped me understand the basics of programming 82%
I would have like to do more with the buggies 64%
The Flowcode activities help me to get to know people in class 73%
This is a good way to learn programming 91%

Figure 5 Table of questionnaire results
It is evident from the comments quoted from Section A and the responses from Section B that the students
found the use of the robots to be a positive experience.

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

5.2 Student Feedback
Staff student liaison meetings were held throughout the year for all courses. The feedback received from the
Computing Fundamentals students was positive about the use of robotics. In particular they commented on
how it improved engagement and group collaboration. They indicated that they would like to see them used
for a larger part of the course next year.

5.3 Staff Observations
From staff observations this proved to be a successful approach for a variety of reasons. As students tackled
the portfolio questions they were able to see instantly from the buggy’s actions whether their solution was
correct or not. It allowed them to play with various parameters and options to see what affect this would have
on the solution. Working with the robotic buggies and the Flowcode software encouraged collaboration as
students would work together to come up with different solutions to more complex problems such as making
the buggy negotiate a maze. It encouraged them to formulate their own problems that they wanted to solve,
e.g. negotiating paths of different shapes and lengths whilst avoiding objects. It proved to be a very successful
approach at motivating and engaging the students.
The process also allowed the students to focus on the problem solving, flow charting and the algorithmic
design aspects of programming as the Flowcode interface presented the students with a graphical interface
where icons can be dragged onto the screen to construct a flowchart that solves the problem. This was very
useful in avoiding the complexities and “hang ups” with students worrying about grammar and syntax. It also
allowed students to explore the logical aspects of programming in a visual way. If the Flowcode programme
ran and did not have syntax errors but rather logical errors then the buggy would behave in an unexpected
way. This reinforced the logical approach needed when constructing a solution to a problem.
Below is a summary of some of the benefits that using the Flowcode buggies had:

• Engaged all students in core tasks whilst providing opportunities for more advanced students to work
on advanced exercises or even to formulate their own problems.

• Helped to mitigate the abstract nature of programming (Dijkstra, 1989) by providing a richer tangible
real world environment for seeing feedback. The PieEater graphical user interface does provide
feedback but is limited in its interaction to mouse and keyboard inputs and the output is restricted to
visuals on a monitor.

• Encouraged experimentation and exploration e.g. use of sensors. In the activities with the robot
buggies this ranged from simply providing a correct solution to exploring modifications to their (correct
solutions) due to environmental factors (e.g. surface friction, light affecting the robot’s sensors).

• Provided visualisation of implementations of solutions to problems.
• Provided a real world environment for learning about programming concepts and designing more

robust code e.g. do not want robot to fall off the work table, collision with walls.
• Assisted learning vocabulary of programming in an interesting way.

Although the experience proved to be positive for the students there are some practicalities that need to be
considered. These are summarised below:

• To use the robotic buggies on a wide scale you need to purchase a sufficient number of buggies and
batteries.

• Time must be set aside for preparation e.g. charging and fitting the batteries.
• Space is required in the classroom to utilise the buggies in a meaningful way.
• There is the possibility for more things to go wrong with the buggies and the connections from the

computer to the buggies. This is not a problem with a purely software based solution.

6. CONCLUSION
Previous research (Whitfield et al., 2007) suggested that students with lower mathematical skills can learn
problem solving and programming if provided with appropriate materials and the use of less complex visual
tools (e.g. Java Trainer) before using more complex IDEs. The Flowcode IDE and buggies are more complex
than those discussed in Whitfield et al. (2007) e.g. the Flowcode IDE uses appropriate technical language.
This may demonstrate that it is not necessarily the complexity of the tool used but rather the engagement and
learning approach taken that is important.
This research demonstrates that the introduction of robotics encourages a constructivist environment in which
to learn, it encourages engagement, collaboration and exploration. It motivated the students to go beyond the

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

tasks set for the course as they wanted to formulate problems to explore “what if”. It enabled the students to
take control of their own learning and ask questions of themselves and their peers rather than immediately
seek solutions from the tutors. The main incentive for the students is the visual and tangible output of their
solutions. They are able to receive instant feedback and interact with the buggy. The solutions that they create
are influenced by real world factors e.g. friction, space.
This research was conducted with a small group of students. However initial findings were positive both from
the students’ perspective and from their results. Their approaches to problem solving seemed to improve
along with their overall performance. It is proposed that the use of robotics be used more widely in this course
and other programming courses within the department. The practicalities listed above would need to be taken
into consideration to ensure the smooth delivery of classes, particularly with large cohorts of students

We acknowledge all registered trademarks within this paper.

7. REFERENCES
Anderson P B, Bennedsen J, Brandorff S, Caspersen and M E, Mosegaard J, (2003), Teaching Programming
to Liberal Arts Students – a Narrative Media Approach, ITiCSE’03, June 30 – July 2003, Thessaloniki, Greece.

Alice, (2010), Alice Project, http://www.alice.org/ (date accessed 8.Jun.2010).

Beaumont C, and Fox C, (2003), Learning Programming: Enhancing Quality through Problem-based Learning
LTSN-ICS conference paper, August.

Bennedsen J, Caspersen M E, (2005) Revealing the Programming Process SIGCSE’05, February 23–27,
2005, St. Louis, Missouri, USA.

Burton P J, Bruhn R E (2003) Teaching Programming in the OOP Era, ACM SIGCSE Bulletin, Reviewed
Paper, Volume 35, Number 2 (June 2003) ACM Press.

Cooper, S, Dann W, and Pausch R, (2003), Teaching Objects-first in Introductory Computer Science, Proc.
34th SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’03, 191-195.

Culwin F, Adeboye K, Campbell P, (2005) POOPLE (Pre-Object Oriented Programming Learning
Environment) prototypes (unpublished).

Dijkstra E W, (1989), On the Cruelty of Really Teaching Computing Science, Comm. ACM 32, pp 1398-1404.

Doswell J T, Mosley P H, An Innovative Approach to Teaching Robotics (2006), Proc. IEEE International
Conference on Advanced Learning Technologies, Sixth IEEE International Conference on Advanced Learning
Technologies, ICALT'06, 1121-1122.

Formula Flowcode Datasheet, (2007), Matrix Multimedia,
http://www.matrixmultimedia.com/datasheets/HP794-60-1.pdf, (date accessed 8.Jun.2010).

Flowers T R, and Gossett K A, (2003), Using Robots and Simulation to Teach Problem Solving in an
Introductory Course in Computing and Information Technology, Proceedings of the Advanced Simulation
Technologies Conference, 2003, Orlando, Florida, March 30 - April 3.

Gagnon G W Jr, and Collay M, (unknown), Constructivist Learning Design,
http://www.prainbow.com/cld/cldp.html, (date accessed 10.Jun.2010).

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

ITALICS Volume 9 Issue 2 November 2010
ISSN: 1473-7507

Gandy E G, (2010), The use of LEGO Mindstorms NXT Robots in the Teaching of Introductory Java
Programming to Undergraduate Students, ITALICS Volume 9 Issue 1 February 2010.

Herterich G E, (2004) One Day Workshop: Mathematics for Computing: 17th November 2004 University of
Birmingham.

Jenkins T, Davy J, (2001), Diversity and Motivation in Introductory Programming, ITALICS 1(1).

Jonassen D H, (2000) Computers as Mindtools for Schools: Engaging Critical Thinking (2nd Edition), Allyn &
Bacon.

Lawhead P B, Bland C G, Barnes D J, Duncan M E, Goldweber M, Hollingsworth R G, Schep M, (2003), A
Road Map for Teaching Introductory Programming Using LEGO Mindstorms Robots, SIGCSE Bulletin, 35(2):
pp 191-20.

Matrix Multimedia, (2010), Formula Flowcode, http://www.matrixmultimedia.com/Formflow-X.php, (date
accessed 8.Jun.2010).

McCracken M, Almstrum V, Diaz D, Guzdial M, Hagan D, Kolikant Y, Laxer C, Thomas L, Wilusz T, (2001), A
Multinational, Multi-institutional Study of Assessment of Programming Skills of First-Year CS Students.
SIGCSE Bulletin 33(4).

McDermott R, Eccelston G, Brindley G, (2007), More than a Good Story – Can You Really Teach
Programming Through Storytelling?, Proceedings of the 8th Higher Education Academy Information and
Computer Sciences Conference (HEA-ICS), Southampton, UK.

Morrison M, Newman T S, (2001), A Study of the Impact of Student Background and Preparedness on
Outcomes in CS1, Proc. 32nd SIGCSE Technical Symposium on Computer Science Education, SIGCSE '01.

Oldehoeft R R, Roman R V, (1977), Methodology for Teaching Introductory Computer Science, ACM SIGCSE
Bulletin, Proceedings of the seventh SIGCSE technical symposium on Computer Science Education, Volume
9, Issue 1, ACM Press.

Turner S, Hill G, (2007), Robots in Problem-Solving and Programming 8th Annual Conference of the Subject
Centre for Information and Computer Sciences, University of Southampton, 28th – 30th August 2007, pp 82-
85.

Whitfield A K, Blakeway S, Herterich G E, Beaumont C. (2007), Programming, disciplines and methods
adopted at Liverpool Hope University, Italics Vol 6, issue 4, 2007.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

L
]

at
 0

8:
40

 0
3

M
ar

ch
 2

01
6

	1. Introduction
	1.1 Programming
	1.2 Problem Solving
	1.3 Liverpool Hope Students

	2. Robotics
	3. Teaching Materials
	3.1 Text Books
	3.2 Online Support
	3.3 Software

	4. Delivery of the Courses
	4.1 Computing Concepts
	4.2 Computing Fundamentals

	5. Analysis
	5.1 Questionnaires
	5.2 Student Feedback
	5.3 Staff Observations

	6. Conclusion
	7. References

