Computers in Human Behavior 41 (2014) 51-61

Contents lists available at ScienceDirect

T COMPUTERS IN
HUMAN BEHAVIOR

Computers in Human Behavior

journal homepage: www.elsevier.com/locate/comphumbeh

Review

Review on teaching and learning of computational thinking through @CmMark
programming: What is next for K-127?

Sze Yee Lye ™, Joyce Hwee Ling Koh

National Institute of Education, Nanyang Technological University, Singapore, 1 Nanyang Walk, Singapore 637616, Singapore

ARTICLE INFO ABSTRACT
Article history: Programming is more than just coding, for, it exposes students to computational thinking which involves
Available online 30 September 2014 problem-solving using computer science concepts like abstraction and decomposition. Even for non-com-
puting majors, computational thinking is applicable and useful in their daily lives. The three dimensions
Keywords: of computational thinking are computational concepts, computational practices and computational per-
Emgtfal:“ming spectives. In recent years, the availability of free and user-friendly programming languages has fuelled
cratc

the interest of researchers and educators to explore how computational thinking can be introduced in
K-12 contexts. Through an analysis of 27 available intervention studies, this paper presents the current
trends of empirical research in the development of computational thinking through programming and
suggests possible research and instructional implications. From the review, we propose that more K-12
intervention studies centering on computational practices and computational perspectives could be con-
ducted in the regular classroom. To better examine these two dimensions, students could be asked to ver-
balize their thought process using think aloud protocol while programming and their on-screen
programming activity could be captured and analyzed. Predetermined categories based on both past
and recent programming studies could be used to guide the analysis of the qualitative data. As for the
instructional implication, it is proposed that a constructionism-based problem-solving learning environ-
ment, with information processing, scaffolding and reflection activities, could be designed to foster com-
putational practices and computational perspectives.

Computer science education
K-12
Computational thinking

© 2014 Elsevier Ltd. All rights reserved.

Contents

B R U o e L ot o) 4 U P 52
2. Computational thinKing. o it it e et e et e e e e e e 52
D728 DR B 1< o () o PPt 52

2.2. Computational thinking through K-12 programming tOOISttt et e et et et ettt ettt iaenns 53

I T 1T ol o 5 U 001 53
4, SeArCh PrOCEAUIES . . .\ ittt ittt ettt ettt e e et e e et et e e et e e e e e e e e 53
D FIAINGS .ot ottt e e e e e 54
5.1. Research question 1: How has programming been incorporated into K-12 curricula? i, 54

5.2. Research question 2: What are the reported outcomes in terms student performance in the computational thinking dimensions? 54
5.2.1. ComPULAtiONAl COMEEPES. .« o v vttt ittt et e et e et e et et et e e e et e e ettt e e e e e e 54

5.2.2. CompPULational PraCtiCes. . . . oo vt ittt ettt et e e e et e et e e e e e e e e e e e 56

5.2.3. ComPULatioNal PeISPECHIVES. . o vttt ittt ettt ettt e e e e e e e e e e e e 56

5.3. Research question 3: What intervention approaches are being used to foster computational thinking? 56
5.3.1. Reinforcement of cOmMpuUtational COMCEPLSottt ittt ettt et e e e e ettt et et ettt et e 56

5320 RefleCHION . ..ottt e e e e e e e e e e e e 57

5.3.3. INfOrmation PrOCESSINE.ottt ittt ettt et e e e e e e e e e e e e e e e e 57

5.3.4. Constructing programs with scaffold e e 57

* Corresponding author.
E-mail addresses: lye.szeyee@gmail.com (S.Y. Lye), joyce.koh@nie.edu.sg (J.H.L. Koh).

http://dx.doi.org/10.1016/j.chb.2014.09.012
0747-5632/© 2014 Elsevier Ltd. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2014.09.012&domain=pdf
http://dx.doi.org/10.1016/j.chb.2014.09.012
mailto:lye.szeyee@gmail.com
mailto:joyce.koh@nie.edu.sg
http://dx.doi.org/10.1016/j.chb.2014.09.012
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh

52 S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61

6. Research iMPLICAtIONSottt ettt et et et et e e et e et e e e e e e e e e e e e e 57
6.1. Explore more classroom-based iNteIVENTIONSottt et e e ettt e e e e e et 57
6.2. Explore more studies in computational practices and computational perspectivesuiiii i 58
6.3. Examining the ProgrammiNg PIOCESS e vttt et et e e e et et et e e et e e et et e et et et e e e e et et et ettt 58
6.4. Analyzing qUAlitative datattt e e e e e e e e e 58
7. Instructional implications fOr K-T2. ot et e et e e e e e e e 58
7.0, AUthentic ProbDIem e e e e e e e e e e e e 59
7.2. Information ProCessing aCtiVitiesottt ettt ettt e e e e e e e e e e 59
7.3, SCAffOlAINg PIrOCESS . . oottt ettt ettt e e e e e e e e e e 59
T4, RefleCHiON. . . .o e e e 59
ST €)3 e 11 T) o PP 59
0 2 (S 1 Lo PP 60

1. Introduction

Programming for K-12 can be traced to the 1960s when Logo
programming was first introduced as a potential framework for
teaching mathematics (Feurzeig & Papert, 2011). In Logo, the stu-
dents moves the turtle (arrow) on the screen by issuing commands
like FD 100 (forward 100). In his seminal book “Mindstorms: Chil-
dren, computers and powerful ideas”, Papert (1980) advocated the
use of the discovery constructionist mode for learning Logo. Never-
theless, Logo did not catch on in mainstream schools in the 1980s,
possibly because of the incompatibility between its discovery-
enabled approach and the more conventional behaviourist school
culture back then (Agalianos, Noss, & Whitty, 2001). Papert
(1980) claimed that the Logo programming experience could
develop powerful intellectual thinking skills among children. Con-
trary to his claim, empirical studies of Logo programming did not
find conclusive evidence of it improving the thinking skills of chil-
dren (Kurland, Pea, Clement, & Mawby, 1986; Pea, 1983).

After Logo, the use of programming to teach thinking skills in K-
12 was not extensively reported. However, in the recent years,
there has been renewed interest in introducing programming to
K-12 students (Grover & Pea, 2013; Kafai & Burke, 2013). This is
fuelled by the availability of easy-to-use visual programming lan-
guages such as Scratch (Burke, 2012; Lee, 2010), Toontalk (Kahn,
Sendova, Sacristan, & Noss, 2011), Stagecast Creator (Denner,
Werner, & Ortiz, 2012) and Alice (Graczynska, 2010). Many of these
new programming languages such as Scratch and Alice have been
modelled after aspects of Logo (Utting, Cooper, Kolling, Maloney,
& Resnick, 2010).

During programming, students are exposed to computational
thinking, a term popularized by Wing (2006). It involves the use
of computer science concepts such as abstraction, debugging,
remixing and iteration to solve problems (Brennan & Resnick,
2012; loannidou, Bennett, Repenning, Koh, & Basawapatna, 2011;
Wing, 2008). This form of thinking can be considered to be funda-
mental for K-12 students because it requires “thinking at multiple
abstractions” (Wing, 2006, p. 35). More importantly, computa-
tional thinking is in line with many aspects of 21st century compe-
tencies such as creativity, critical thinking, and problem- solving
(Ananiadou & Claro, 2009; Binkley et al., 2012). Thus, it is not sur-
prising that many educators assert that programming is important
for K-12 students in this era (Kafai & Burke, 2013; Margolis, Goode,
& Bernier, 2011; Resnick et al., 2009). This revived interest in pro-
gramming for K-12 settings suggests the need to consider how it
can be better related to the kinds of educational outcomes that it
can potentially foster. Some of the outcomes suggested by
researchers are the ability to think more systematically (Kafai &
Burke, 2013) and the development of mathematical and scientific
expertise (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013).
Yet, in the current literature, there is a dearth of papers that
explore computational thinking through programming in K-12
contexts (Grover & Pea, 2013) as these programming studies are

more often examined for tertiary students undertaking computer
science courses (e.g., Katai & Toth, 2010; Moreno, 2012). Therefore,
in this paper, we attempt to examine published empirical studies
involving students in both K-12 and higher education contexts so
as to derive insights on computational thinking through program-
ming for K-12 curriculum.

2. Computational thinking
2.1. Definition

The term computational thinking is made popular by Wing
(2006). In her seminal article on computational thinking, she
argued that computational thinking “represents a universally
applicable attitude and skill set everyone, not just computer scien-
tists, would be eager to learn and use” (p. 33). Since then, compu-
tational thinking has gained traction in the K-12 context in the
USA. However, the definition of computational thinking still
remains contested as no dominant discourse reigns (Barr &
Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea,
2013). For example, the International Society for Technology in
Education (ISTE) views computational thinking as algorithmic
thinking with automation tools and data representation with the
use of simulation. On the other hand, the National Research Coun-
cil (NRC) recommends mathematics and computational thinking to
be one of the eight essential practices for the scientific and engi-
neering dimension outlined in the “Framework for K-12 Science
Education” (NRC, 2012). In this framework, mathematics and com-
putational thinking involves the use of computer tools to represent
physical variables and the relationships among them.

For both ISTE and NRC, students may be considered to be exhib-
iting computational thinking even though they are not creating
with technology tools. Conversely, programming involves students
exhibiting computational thinking through the construction of
artifacts (Kafai & Burke, 2013; Resnick et al., 2009). Thus, the gen-
eral definitions on computational thinking suggested by ISTE and
NRC may not be suited for programming. Hence, in this review
on computational thinking through programming for K-12 stu-
dents, we are using the framework proposed for Scratch by
Brennan and Resnick (2012). Scratch is a popular programming
language used in K-12 settings (e.g., Baytak & Land, 2011; Kafai,
Fields, & Burke, 2010; Tangney, Oldham, Conneely, Barrett, &
Lawlor, 2010; Theodorou & Kordaki, 2010). With respect to Scratch,
Brennan and Resnick (2012) proposed three dimensions of compu-
tational thinking: computational concepts, computational prac-
tices, and computational perspectives. Table 1 summarizes the
key ideas on these three dimensions. These dimensions are appro-
priate for understanding how K-12 students approach program-
ming as they are also in line with the Logo programming
language knowledge proposed by Mayer (1992). This includes
the syntactic, semantic, schematic knowledge (computational

S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61 53

Table 1
Computational thinking.
Dimension Description Examples
Computational Concepts that programmer use Variables
concepts
Loops
Computational Problem-solving practices that Being incremental and
practices occurs in the process of iterative

programming

Testing and debugging
Reusing and remixing
Abstracting and
modularizing
Expressing and
questioning about the
technology world

Computational
perspectives

Students’ understandings of
themselves, their relationships
to others, and the technological
world around them

concepts) and strategic knowledge (computational practices).
Moreover, Scratch shares similar features with contemporary
visual programming languages for K-12 students (e.g., Alice). These
languages are easy-to-understand as they, provide visual feedback
of the program in the form of animated objects and allow students
to create interactive media (e.g., animations and games). Therefore,
this framework is likely to be suitable for considering computa-
tional thinking for programming contexts in K-12 education.

2.2. Computational thinking through K-12 programming tools

Traditional programming languages such as Java or C++ have
representation that closely resembles the computer’s way of think-
ing (Smith, Cypher, & Tesler, 2000). On the other hand, visual pro-
gramming languages use representation that is closer to human
language. These visual programming languages are usually less
powerful than traditional languages as they are domain-specific
(e.g., 3D animation for Alice). It is better to use visual programming
languages rather than traditional programming languages to facil-
itate the three dimensions of computational thinking in K-12 con-
texts because unnecessary syntax is reduced (e.g., the use of semi
colon and curly brackets) and the commands are closer to spoken
English. Students usually need only to drag and snap the command
blocks (see Fig. 1). With these features, such programming tools
help reduce the cognitive load on the students and “allow students
to focus on the logic and structures involved in programming
rather than worrying about the mechanics of writing programs”
(Kelleher & Pausch, 2005, p. 131). As such, these features of visual
programming languages can potentially allow students to acquire
the computational concepts more easily without the need to learn
complex programming syntax.

These programming tools also facilitate students to enact the
computational practices dimension of computational thinking

more easily because the outcomes of their programming can be
viewed in the form of animated objects. Such visualization makes
computational practices such as testing and debugging cognitively
less demanding. This allows students to acquire computational
problem-solving practices more easily. Ultimately, these tools
become “technology-as-partner in the learning process”
(Jonassen, Howland, Marra, & Crismond, 2008, p. 7) and can possi-
bly help K-12 students to extend these computational practices
towards enhancing their general problem-solving ability (Lin &
Liu, 2012; Ratcliff & Anderson, 2011). These tools can also engage
students in the building of multi-media digital products, thereby
enabling programming activities to be used as a means for stu-
dents to express their ideas. This can shape students’ computa-
tional perspective about the technological world. It develops
students’ digital literacy for creating, sharing and remixing digital
resources (Hague & Payton, 2011; Mills, 2010; Ng, 2012) and in
the process of doing so, students are no longer passive consumers
of the technology (Resnick et al., 2009). K-12 programming tools
are therefore becoming increasingly important because they afford
for such kinds of digital literacy experiences (Mills, 2010).

3. Research purpose

With these recent developments in the visual programming
languages for K-12, there is renewed interest to consider how pro-
gramming can benefit K-12 students (Barr & Stephenson, 2011;
Bell, 2013; Grover & Pea, 2013; Olson, 2012). There is, clearly, a
need for researchers and educators to better understand the
empirical evidence from studies related to students’ engagement
in programming activities. Hence, the purpose of this paper is to
suggest possible research and instructional implications based on
the review of existing empirical studies. Specifically, this review
is guided by the following questions:

1. How has programming been incorporated into K-12 curricula?

2. What are the reported outcomes of student performance in
computational thinking dimensions?

3. What intervention approaches are being used to foster compu-
tational thinking?

4. Search procedures

Searches were performed for recent published peer-reviewed
empirical intervention studies on computational thinking through
programming. Therefore, the search excluded conference proceed-
ings papers and conceptual papers. We chose to start the search
from the year 2009 as it was the year where the NRC conducted
the first workshop to discuss how best to introduce students to
computational thinking in the USA. Furthermore, ISTE and the
Computer Science Teachers’ Association also started a project enti-

Traditional Language (Java)

int i=0;

int sun0;

for (i=0;i<10;i++) |
sum = swm + i

H

Visual programming language (Scratch)

set I_l to m

set sum | to m

change surn | by i
change u by

Fig. 1. Programming languages.

54 S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61

tled “Leveraging Thought Leadership for Computational Thinking
in PK-12” in 2009.

We first started our search with the search term “computa-
tional thinking” and “K-12” in two popular and established
databases: SSCI (Education educational research category) and
ERIC. In ERIC, we only searched for peer reviewed articles. As of
November 15 2013, the search returned 13 articles (2 from SSCI
and 11 from ERIC). Due to the limited number of articles found,
we decided to use just one search term “computational thinking”.
This search without the term “K-12” resulted in studies conducted
in higher education context. These higher education studies, too,
can inform K-12 studies as these interventions could be adapted
for younger students. As of November 15 2013, the search returned
19 articles (2 from SSCI and 17 from ERIC) but none of the articles
were selected since they were conceptual papers, literature
reviews, or empirical studies where programming was not used
to foster computational thinking. As the aim of this paper is to
review articles on computational thinking through programming,
we conducted another search in these two databases with the
search term “computer programming”. It yielded 109 articles (35
from SSCI and 74 from ERIC) where 20 articles were selected for
review. The rest of the articles were discarded as they were either
not empirical studies or not reporting on computational thinking.
Due to the dearth of studies that have been conducted in this field,
we decided to expand the search using a more general term of
“computer science”. It yielded 94 articles and only seven articles
were selected. The other articles were discarded as their research
focus was not programming. All in all, 27 articles were selected
for this literature review.

5. Findings

5.1. Research question 1: How has programming been incorporated
into K-12 curricula?

Out of the 27 studies reviewed, nine were carried out with K-12
students (see Table 2). The programming languages (e.g., Scratch
and Logo) adopted for the younger students were typically “low-
floor” (easy for the students to pick up) and “high-ceiling” (allow
students to create more sophisticated programs) as envisioned
by Papert (1980). The only exception was in the study of Wang
and Chen (2010) where students were taught Flash ActionScript.
Programming was used with a wide profile of K-12 students which
included kindergarten and middle school students.

Students were found to be using programming to learn content
such as languages or mathematics. In the learning of languages,
Burke (2012) suggested that Scratch offered a “new medium
through which children can exercise the composition skills they
learned within traditional literacy classrooms while also offering

the mutual benefit of introducing coding at earlier ages” (p. 131).
Students with hearing disorders learnt English words with the
use of Logo (Miller, 2009) whereas in mathematics, students exter-
nalized their mathematics concepts through Toontalk (Kahn et al.,
2011) and Logo (Fessakis, Gouli, & Mavroudi, 2013). Students were
also reported to be creating language art projects with Scratch (Lee,
2010).

5.2. Research question 2: What are the reported outcomes in terms
student performance in the computational thinking dimensions?

From the review, most of the studies were exploring issues
related to the computational thinking dimension of computational
concepts. See Table 3 for details.

5.2.1. Computational concepts

Studies focusing on this computational thinking dimension
examined how students learnt the technicalities of programming
which included computational concepts such as variables and
loops. There were altogether 23 studies (16 quantitative and seven
qualitative). Seven studies were conducted in K-12 while the rest
were conducted on higher education students who were learning
more complex computational concepts (e.g., class and bubble
sorting).

For the 16 quantitative studies, only two studies were con-
ducted in K-12 settings. Both these studies reported results in
favour of the experimental group with treatments such as onscreen
blocks and game-play being used to teach computational concepts
(Kazakoff & Bers, 2012; Wang & Chen, 2010). For the eight studies
performed on higher education students, the results showed that
students in the treatment group taught with strategies such as pair
programming using metaphors, mindmapping and cooperative
learning and multi-sensory methods performed better (Hui &
Umar, 2011; Hung, 2012; Ismail, Ngah, & Umar, 2010; Katai &
Toth, 2010; Kose, Koc, & Yucesoy, 2013; Kyungbin & Jonassen,
2011; Ma, Ferguson, Roper, & Wood, 2011; Moreno, 2012). Please
refer to Table 3 for the details about the treatment for the experi-
mental and control groups.

On the other hand, the remaining three higher education stud-
ies did not report any significant differences between the control
and experimental groups. The non-significant results could be
due to the experimental group spending less time on the program-
ming tasks than the control group (Garner, 2009), short experi-
mental time or small number of participants (Hsiao &
Brusilovsky, 2011) and that the intervention did not include the
learning of the test items (Urquiza-Fuentes & Velazquez-Iturbide,
2013). Despite the lack of significant differences between the treat-
ment and the control group, these studies reported that the treat-
ments had a positive effect on the weaker students. Strategies such

Table 2
K-12 studies.
Author Participants Profile Age Duration Programming language Subject learnt
Fessakis et al. (2013) 10 Kindergarten children 1h 15 min Logo Mathematics
Burke (2012) 10 Male students in voluntary in 12-14 7 weeks Scratch English
after school program
Denner et al. (2012) 59 Female students in voluntary 12-14 14 months Stagecast Creator Computer programming
after school program
Kazakoff and Bers (2012) 58 Kindergarten children 4.5-6.5 20h Creative hybrid environment Computer programming
for robotic programming
Lin and Liu (2012) 3 Students in MSWLogo camp 9-10 5 days Logo Computer programming
Kahn et al. (2011) 31 High achieving students 9-13 7-10 weeks Toontalk Mathematics
Lee (2010) 1 After school program 9 6 months Scratch Language arts
Wang and Chen (2010) 115 Junior high students with 12-14 6 week Flash action script Computer programming
flash experience
Miller (2009) 1 Hearing-impaired 3 months Logo English

Table 3

Summary of article.

S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61

55

Author Setting

Research approach

Intervention

Computational thinking

Concepts

Practices

Perspective

10

12

13

14

15

16

17

18

19

20

Fessakis et al. (2013) K-12

Kose et al. (2013) Higher

education

Urquiza-Fuentes and
Velazquez-Iturbide (2013)

Burke (2012)
Denner et al. (2012)

K-12

Hung (2012) Higher

education

Kazakoff and Bers (2012) K-12

Lin and Liu (2012)
Moreno (2012) Higher

education

Wang et al., 2012
Esteves et al. (2011)
Hsiao and Brusilovsky (2011)

Hui and Umar (2011)

Kahn et al. (2011) K-12

Kyungbin and Jonassen (2011) Higher

education

Ma et al. (2011)

Moura and van Hattum-Janssen
(2011)
Robertson (2011)

Goel and Kathuria (2010)

Wang and Chen (2010) K-12

Case study

Experimental

Case study
Qualitative artifact
analysis
Experimental

Experimental

Case study
Experimental

Case study
Action research
Experimental

Case study

Experimental

Survey

Qualitative artifact
analysis
Experimental

Teacher-guided whole-class approach with
interactive white board
Experimental

Story-based e-learning approach
Control

Traditional teacher-directed approach
Experimental

Program visualization through animation
construction or viewing

Control

Traditional teacher-directed approach
Digital story telling

Game creation

Experimental

Diagram method
Analogy method
Control

Lecture style
Experimental

Tangible programming language with the use

of physical or onscreen blocks
Control

Art activities

Pair programming
Experimental

Game strategy creation

Control

Regular exercise as homework with no
interaction with the game

Peer code review

Project based learning in virtual world
Experimental

Annotation and peer review of annotation
Control

Annotation and browsing through the
annotation

Experimental

Pair programming

Metaphor

Control

Pair programming

Computational modelling of mathematics
concepts

Online discussion

Experimental

Active reflective self explanation
Control

Passive reflective self explanation
Experimental

Cognitive conflict

Program construction

Control

Program construction

Active learning

Blogging

Experimental

Pair programming

Control

Solo programming

Experimental

Game play using matching-challenging
strategy

Control

Game play using challenging strategy

X\

P

AYAY

(continued on next page)

56

Table 3 (continued)

S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61

Author

Setting

Research approach

Intervention Computational thinking

Concepts Practices Perspective

21

22

23

24

25

26

27

Katai and Toth (2010)

Garner (2009)

Kordaki (2010)

Lee (2010)

Ismail et al. (2010)

Jiau et al. (2009)

Miller (2009)

Higher
education

Higher
education
K-12

Higher
education

K-12

Case study

Experimental

Case study

Experimental

Multi-sensory method such as dancing and I
role playing

Control

Without multi-sensory method

Experimental

Part-complete solution method %4
Control

Without part-complete solution method
Computer-based problem-solving %4
environment

Analogy-based instructional strategies

Individual project work %4
Experimental

Mindmapping v
Cooperative learning

Control

Traditional teacher-directed approach

Experimental

Game strategy creation I
Control

Without game strategy creation

Modelling %4

as having students to work on part-complete solutions (Garner,
2009) and reviewing comments on programming examples
(Hsiao & Brusilovsky, 2011) were reported as being beneficial for
the weaker students whereas another study reported that the fail-
ure and dropout rate decreased with the use of animation viewing
and construction in a computer science course (Urquiza-Fuentes &
Velazquez-Iturbide, 2013).

The remaining three quantitative studies only reported descrip-
tive statistics which indicated that the intervention had helped the
students. However, they did not analyze the pre and post-study
statistical differences. Both the failure rate and withdrawal rate
dropped in a computer science introductory course through the
use of an learning-centred active approach (Moura & van
Hattum-Janssen, 2011), weaker students caught up with the better
students after experiencing pair programming (Goel & Kathuria,
2010) and the number of students scoring above 80 per-cent
increased with game strategy creation (Jiau, Chen, & Ssu, 2009).

For the remaining seven non-experimental qualitative studies,
students were found to have grasped the computational concepts
based on field observation, survey, test results and artifact analysis.
Unlike the quantitative studies, these studies described the stu-
dents’ programming experience. These studies were conducted in
both K-12 (Burke, 2012; Denner et al., 2012; Lee, 2010; Lin & Liu,
2012; Miller, 2009) and higher education contexts (Kordaki,
2010; Wang, Li, Feng, Jiang, & Liu, 2012).

5.2.2. Computational practices

For the computational practices studies examining problem-
solving processes during programming, Fessakis et al. (2013) and
Esteves, Fonseca, Morgado, and Martins (2011) reported how the
visualization output of the programming code helped the K-12 stu-
dents and higher education students respectively in this dimension
of computational thinking. In the study of Fessakis et al. (2013),
kindergarten students were incremental and iterative while creat-
ing the paths with Logo as they were observed to prefer “stepwise
refinement approach which gave them the opportunity to immedi-
ately execute their commands and receive feedback” (p. 94). On
the other hand, the visualization of 3D output in the Second Life
programming environment helped undergraduates in testing and

debugging as “the students had an obvious feedback regarding
the correctness of their program” (Esteves et al., 2011, p. 631).
The other four studies investigated how intervention
approaches such as reflection affected students’ computational
practices. In these studies, only one was conducted for K-12 stu-
dents (Lin & Liu, 2012). The results showed that the interventions
had positive effect on the computational practices of being incre-
mental and iterative (Robertson, 2011), and testing and debugging
(Kyungbin & Jonassen, 2011; Lin & Liu, 2012; Wang et al., 2012).

5.2.3. Computational perspectives

Computational perspectives entail students developing under-
standings of themselves and their relationships with others and
the technological world. For example, this dimension of computa-
tional thinking was evident when students were expressing them-
selves with programming. For the two studies that reported on
computational perspectives, K-12 students were able to express
themselves by creating interactive digital media using contempo-
rary K-12 programming tools. High ability students expressed their
concept of infinity (Kahn et al., 2011) with Toontalk while middle
school students were able to create their own digital stories with
Scratch (Burke, 2012).

5.3. Research question 3: What intervention approaches are being used
to foster computational thinking?

To answer this research question, the interventions outlined in
Table 3 were further analyzed and grouped into four categories.
They are reinforcement of computational concepts, reflection,
and information processing and constructing their own programs.

5.3.1. Reinforcement of computational concepts

In this review, the computational concepts were being rein-
forced with the help of the computer system where feedback
was provided through game for junior high students (Wang &
Chen, 2010) or e-learning approach for university students (Kose
et al., 2013). These two studies reported positive results. This
approach was grounded on behaviourist learning where the
desired performance is shaped through the use of behaviour

S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61 57

management strategies such as reinforcement and punishment
(Driscoll, 2005). In such an approach, students are essentially
learning from technology (technology-as-teacher). They are pas-
sive learners and information is transmitted to them. Such an
approach is usually not favoured by contemporary researchers
who advocate students learning with technology as partners in
learning (e.g., Jonassen et al., 2008; Mayer, 2010).

5.3.2. Reflection

Reflection was a strategy more often used in the studies involv-
ing higher education students where they were asked to reflect on
their programming experience. This can possibly foster computa-
tional practices and perspectives as the students need to review
and think about their programming process. Such kinds of reflec-
tion can be directed towards their programming performance
(Zimmerman & Tsikalas, 2005) or their peers’ programming perfor-
mance. Reflection was also found to encourage the review of one’s
own learning performance (Sendergaard & Mulder, 2012; Yang,
2010), thereby engaging the students into thinking-doing.

Most of the studies using this approach showed promising
results. For self-reflection, participants in the study of Robertson
(2011) constructed their own program and blogged about their
programming experience in Second Life. It was found that the blog-
ging experience could support the development of problem-solv-
ing practices such as being incremental and iterative for
university students. On the other hand, engaging in self-explana-
tion (Kyungbin & Jonassen, 2011) and peer code review (Wang
et al., 2012) could help the students to test and debug. In the study
of Hsiao and Brusilovsky (2011), the students reviewed the anno-
tations on programming examples provided by the instructors.
Even though this study did not report any findings on computa-
tional practices or perspectives, we surmise such peer review can
possibly enhance these two dimensions of computational thinking

5.3.3. Information processing

The information processing approach helped students to
acquire computational concepts by providing structures to allow
them to better process the information presented to them. From
the analysis, such approach was only evident in the higher educa-
tion studies. This approach arises mainly from cognitivism where
learning is viewed as the “processing of information and storing
it in the memory” (Driscoll, 2005, p. 110). Most of the studies
reported results in favour of the treatment group with the excep-
tion of Garner (2009) and Urquiza-Fuentes and Velazquez-
[turbide (2013).

In this review, researchers were using different strategies to
enhance students’ information processing. Metaphors were used
to help students relate the programming concepts to their prior
knowledge (Hui & Umar, 2011) and part-complete solutions helped
to reduce students’ cognitive load (Garner, 2009). Students were
also asked to organize their thinking process by using mindmap-
ping (Ismail et al., 2010) and program visualizations of the inter-
mediate steps of their program (Ma et al., 2011; Urquiza-Fuentes
& Velazquez-Iturbide, 2013). Another study used cognitive conflict
to address students’ misconceptions (Ma et al., 2011). In the study
of Hung (2012), students’ learning style were matched to the
appropriate cognitive learning strategies (i.e., diagram and analogy
method). Katai and Toth (2010) used a multi-sensory approach
which affords for dual coding. In this study, students watched a
dance performance and role-played so that they could better
understand difficult computing concepts such as bubble-sorting.

In three studies (Hui & Umar, 2011; Ismail et al., 2010; Ma et al.,
2011), these information processing intervention was extended by
asking students to construct their own programs. As such, the
studies did not just investigate how the learners acquired

computational concepts in their head but learnt how to use the
various computational concepts to build a workable program.

5.3.4. Constructing programs with scaffold

The most popular intervention approach involves learners con-
structing their own programs with scaffolds. Such approach could
cover all the three dimensions of computational thinking but none
of the studies examined the all the three aspects of computational
thinking. There were altogether eight K-12 studies and ten higher
education studies using this approach. The results of the studies
suggested constructing programs could potentially help to foster
the three dimensions of computational thinking. This approach
arose from constructionism which “attaches special importance
to the role of constructions in the world as a support for those in
the head, thereby becoming less of a purely mentalist doctrine”
(Papert, 1994, p. 143). In constructionism, students are actively
engaged in knowledge construction by building meaningful prod-
ucts for others or themselves (Kafai & Resnick, 1996). For these
studies, students constructed their programs with the scaffolds
provided. They were not left alone to explore programming. This
observation was in line with the assessment on Logo programming
studies made by Mayer (2004) who argued that “the failure of pure
discovery as an effective instructional method” (p. 17) for the
learning of programming. Similarly, other Logo researchers too
concurred with the view that structured guided discovery was a
more preferred approach (Clement & Merriman, 1988; Lehrer,
Lee, & Jeong, 1999).

For some of the studies, students were guided in their program
construction with intervention approaches suggested in the previ-
ous section. These included reflection (Robertson, 2011) and infor-
mation processing (Hui & Umar, 2011; Ismail et al., 2010; Ma et al.,
2011). Other than these intervention approaches, the learners were
also guided in their construction of their programs through com-
puter scaffolding for program construction (Jiau et al., 2009;
Kordaki, 2010; Ma et al., 2011; Moreno, 2012), teachers’ scaffolding
(Burke, 2012; Esteves et al., 2011; Fessakis et al., 2013; Kahn et al.,
2011; Kazakoff & Bers, 2012; Lee, 2010; Miller, 2009; Moura & van
Hattum-Janssen, 2011), guidance from parents (Lin & Liu, 2012) or
learning from peers (Denner et al., 2012; Goel & Kathuria, 2010;
Hui & Umar, 2011; Ismail et al., 2010). In particular, Goel and
Kathuria (2010) and Hui and Umar (2011) adopted the strategy
of pair programming. In pair programming, one student is the dri-
ver who does the actual coding while the other takes the role of an
observer who reviews the code.

6. Research implications
6.1. Explore more classroom-based interventions

From Table 3, only nine peer-reviewed intervention studies
were based in K-12 settings. There is thus an apparent gap in this
research area of developing computational thinking (especially in
the two dimensions of computational practices and computational
perspectives) for K-12 students. Even with these limited studies,
most were conducted as after-school activities. These students
either participated in the activities voluntarily (e.g., Burke, 2012;
Denner et al., 2012; Kahn et al., 2011; Lin & Liu, 2012) or were spe-
cially selected (e.g., Lee, 2010; Miller, 2009). Therefore, these stud-
ies might not be representative of typical classrooms and these
results show that students’ learning of computational thinking in
naturalistic classrooms settings are still not well-understood. With
the paucity of research in naturalistic classroom settings, there is,
clearly, a need to conduct studies in this area. This will better help
to inform educators and researchers on how to design and imple-
ment the grade-appropriate programming into K-12 curriculum.

58 S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61

6.2. Explore more studies in computational practices and
computational perspectives

All in all, there were 23 (85%) studies that examined the learn-
ing outcomes in terms of computational concepts (e.g., conditions
and variables). Computational thinking entails more than just the
computational concepts. It also involves computational practices
and perspectives as suggested by Brennan and Resnick (2012).
However, there were only eight studies reporting either computa-
tional practices or computational perspectives. Studies examining
computational practices and computational perspectives have
become even more pertinent in K-12 settings as the rationale of
introducing computational thinking (e.g., computational practices
and computational perspectives) through programming is to equip
them with the problem-solving skills that they can transfer to non-
programming domains (Barr & Stephenson, 2011; Resnick et al.,
2009; Wing, 2006). After all, computational practices and perspec-
tives are especially useful in daily lives as there is methodical con-
tinuity between common sense and these two dimensions. Thus,
the interventions for fostering of computational practices and com-
putational perspectives, as well as the transfer of these competen-
cies for general problem-solving is another area for further
research to support the integration of programming into K-12
curricula.

6.3. Examining the programming process

For studies involving computational practices and computa-
tional perspectives, the programming process is usually examined.
In this review, the programming process was mostly captured
through field observations. But, such field observations usually
involve a few participants and does not provide broad coverage
(Yin, 2014). In future research, field observations could be further
complemented by recordings of on-screen activities as demon-
strated in the study conducted by Kahn et al. (2011). Furthermore,
to better understand the students’ programming process, the stu-
dents can think-aloud while they are constructing their program.
Such think-aloud protocol allows the cognitive process to be ver-
balized (Ericsson & Simon, 1993) and would provide useful infor-
mation on the computational practice and perspectives. However,
none of the articles reviewed adopted the think-aloud protocol.
For future studies, researchers could consider getting the students
to think-aloud while they are programming. Their on-screen activ-
ity with the verbalization of their thinking process would be
recorded and analysed to better understand the computational
practices and computational perspectives of computational
thinking.

6.4. Analyzing qualitative data

In these eight studies, researchers were mostly collecting qual-
itative data such as field observations, interviews and students’
artifacts to understand their computational practices and perspec-
tives. These studies adopted conventional content analysis with no
pre-determined categories to analyze the data. Conventional con-
tent analysis is suited for studies describing the phenomenon with
scant literature (Hsieh & Shannon, 2005). But in this case, there are
programming-related studies to guide the formation of categories
since programming for K-12 can be traced to the 1960s with the
introduction of Logo. Thus, for future research, these predeter-
mined categories could be possibly be based on both past and
recent programming studies (e.g., Ching & Kafai, 2008; Clement &
Merriman, 1988; Klahr & Carver, 1988; Pea, 1983; Peppler &
Kafai, 2007) or even seminar articles on problem-solving (e.g.,
Polya, 1957).

Table 4
Proposed debugging coding scheme.

Categories based on Polya (1957) Possible codes

Understand the problem Describe the bug
Syntactic and semantic knowledge
Program comprehension

Causal reasoning

Devise a plan Find the location bug
Connection between the programming
scripts

Causal reasoning
Carry out the plan Fix the bug

Review the plan Test the solution

For example, for researchers interested in the computational
practice of testing and debugging which is one of the essential
problem-solving skill in programming (Fitzgerald et al.,, 2008;
McCauley et al., 2008), the pre-determined categories could be
derived from the generic established Polya (1957)'s 4-step of prob-
lem-solving. To further distill Polya’s global strategy for use in test-
ing and debugging, the actual set of possible codes are can be
derived from for debugging Logo model proposed by Carver
(1988). These include describing, finding, fixing the bug and testing
the solution. Other possible codes also include the possible debug-
ging skills such as connection between the programming scripts
(Lehrer et al, 1999) and program comprehension (McCauley
et al., 2008). This would provide the basis for the coding scheme
in analyzing the qualitative data. Please see Table 4 for more
details.

The use of such kinds of pre-determined categories will help
researchers overcome the weakness of conventional content anal-
ysis in which they may not be able to grasp a “complete under-
standing of the context, thus failing to identify key categories”
(Hsieh & Shannon, 2005, p. 1280).

7. Instructional implications for K-12

In the already limited number of studies on computational
practice and computational perspectives, some researchers
assumed that either the affordances of the visual programming
environment were adequate to support students (Esteves et al.,
2011; Fessakis et al., 2013) or that the students had the required
abilities to undertake the learning tasks (Kahn et al., 2011). In
essence, there was no specific intervention approach that consid-
ered both aspects during instruction. There seems to be an implicit
assumption that learners can exhibit such computational practices
and perspectives through pure self- discovery. However, we are of
the view that this assumption needs to be interrogated as “the
child’s present experience is not self-explanatory” (Dewey, 1902/
2008, p. 13). Without guidance on the cognitive aspects of compu-
tational practices and computational perspectives (Grover & Pea,
2013), the programming experience may be non-educative as stu-
dents are not actively reflecting on their experience. They could be
merely doing it in the trial-and-error mode rather than thinking as
they are doing (Biesta & Burbules, 2003). Hence, when planning for
programming in K-12 contexts, care needs to be devoted to these
two aspects for supporting computational thinking. In essence,
the students ought to be thinking-doing and not just doing.

To address the gap of scant intervention studies in computa-
tional practices and computational perspectives (see Section 6.2),
there is a need to explore how instructional activities can support
thinking-doing. We propose that researchers should consider
designing K-12 constructionism-based problem-solving learning
environment (PSLE) with evidence-based approaches as suggested

S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61 59

by this review. Intervention approaches that are based on con-
structionism learning theory are common in the review of the 27
articles and these studies usually report positive outcomes. This
PSLE could be designed with the framework suggested by
Jonassen (2011) with activities planned for the intentional learning
of problem-solving strategies. Students would learn to solve prob-
lems which are presented as cases and acquire cognitive skills such
as causal reasoning and metacognition. The learning of such cogni-
tive skills, though important for computational practices and com-
putational perspectives, is rarely examined in the studies
examined in this review.

In this PSLE, we envision students to be constructing program
for an authentic situation (e.g., designing an interactive story for
the school open house). The PSLE would also present students with
instructional content (e.g., tutorial videos) for the computational
concepts and cases they need to solve. The cases could contain
bugs commonly generated by students during programming. The
following would section further describe the design of the pro-
posed PSLE.

7.1. Authentic problem

At the heart of this learning environment, there has to be a
problem pertinent to the students since learning in problem-solv-
ing “should be anchored in an authentic problem that is relevant to
the learner” (Jonassen, 2011, p. 150).They should be constructing
things, in this case, programs, that matter to them. Hence, it is
envisioned that they are more likely to be intellectually engaged
(Kafai & Resnick, 1996). From Table 3, some of the possible prob-
lems as suggested by the review were designing game strategy
(Jiau et al., 2009; Moreno, 2012), game (Denner & Werner, 2007,
Lee, 2010) or digital stories (Burke, 2012; Lee, 2010). Researchers
would have to contextualize the problems to their context.

7.2. Information processing activities

For students to acquire computational concepts, researchers
should consider using the information processing approach (see
Section 5.3.3) which is seldom used in the K-12 settings. Research-
ers may assume that students can acquire such computational con-
cepts easily with the help of graphical and easy-to-use K-12
programming tools. However, despite the affordances of the K-12
programming tools, we argue that there is still the need for specific
intervention approach for more complex concepts such as events
which can cause another sub-program to execute. To help students
better grasp such complex computing concepts, researchers can
adapt information processing strategies (e.g., metaphor, cognitive
conflict or mind-mapping) as suggested in this review.

7.3. Scaffolding process

The teacher would provide scaffolds for the students in this
PSLE as suggested by the review (see Section 5.3.4). However, we
find no framework on guiding the scaffolding process in these
studies. We, thus, propose using the scaffolding process guided
by the recommendations of Wood, Bruner, and Ross (1976). Please
see Table 5.

To scaffold the program construction, the final program could
be broken down into mini programs which would make the given
task manageable (reduction in degrees of freedom). Take for exam-
ple, in creating an interactive story, the students would need to
know how to insert background or make the two objects to talk
to each other. Teacher could demonstrate on how such a mini-pro-
gram could be constructed. In frustration control, the teacher
would guide the students by prompting them with questions on
their problem-solving process (e.g., why do you put that command

Table 5
Role of teacher in scaffolding process (Wood et al., 1976).

Role Description

Maintain the students’ interest in the
given task

Making the task manageable

Keeping the students on task
Highlighting feature that can help the
students to accomplish the task
Motivate the students and provide timely
guidance so that they would not feel
frustrated and would like to give up

Role model the process required

Recruitment
Reduction in degrees of freedom
Direct maintenance

Marking critical features

Frustration control

Demonstration

there? What is the purpose of this command?). Such “inserted
questions may well be the most effective metacognitive strategy
in problem-solving learning” (Jonassen, 2011, p. 170).

In demonstration, the teachers could present the case in the
form of worked example which is one of the common instructional
in problem-solving (Jonassen, 2011). During the worked example,
the teachers could role model the problem-solving process by
making explicit their thinking process. Such strategy is not new
in programming studies. In the past Logo studies, there were expli-
cit modelling of computational practice of abstracting and modu-
larizing (Fay & Mayer, 1994) and testing and debugging (Craver,
1988).

Marking and emphasizing the critical features of causal rela-
tionship between the commands, especially in the different
objects, is vital as this would help the students in program compre-
hension. For example, an event in one object might cause the exe-
cution of the command in another object. Program comprehension
aids in computational practice such as testing and debugging
(McCauley et al., 2008). But, novice programmers usually have dif-
ficulty relating different commands together (Robins, Rountree, &
Rountree, 2003) as they would “identify programming actions at
the level of individual programming statements” (Lehrer et al.,
1999, p. 247). Hence, such explicit marking of causal reasoning is
important for them to better understand the program and can thus
better test and debug the program.

7.4. Reflection

On top of solving cases and constructing programs, the students
could also be engaged in reflection which is seldom found in the K-
12 studies reviewed. Reflection will help the students in metacog-
nition as “reflection can focus on goals or one’s own thinking”
(Davis, 2003, p. 92). K-12 researchers can still consider adopting
this approach so that the younger students reflect on their compu-
tational thinking process too (see Section 5.3.2). The students could
either self-reflect on their own learning experience or reflect on
their peers’ code. Students would need to be guided on how they
are engaged in self-reflection or peer reviewing. This guide could
be adapted from Polya’s problem-solving process.

8. Conclusion

In this paper, 27 empirical articles on programming in K-12 and
higher education were reviewed. K-12 students were using easy to
use visual programming languages to create digital stories and
games. The popular intervention strategy is based on construction-
ism in which students create something concrete (e.g. program or
comments) to consolidate what they have learned. Most of the
studies reported positive outcomes. Despite the recent revived
interest in programming for K-12, little studies have been con-
ducted to inform the researchers and educators on implementing

60 S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61

suitable curriculum for the group of students. In this paper, we rec-
ommend that more intervention studies, centering on computa-
tional practices and perspectives, can be conducted in regular K-
12 classrooms. Rich data on computational practice and perspec-
tive could be collected via on-screen recording and students’ think-
ing aloud while data analysis could be further strengthened by
using predetermined categories based on programming studies.
To support these two dimensions of computational thinking, a con-
structionism-based problem-solving learning environment, with
authentic problem, information processing, scaffolding and reflec-
tion activities, could possibly be designed.

References

Agalianos, A., Noss, R, & Whitty, G. (2001). Logo in mainstream schools: The
struggle over the soul of an educational innovation. British Journal of Sociology of
Education, 22(4), 479-500.

Ananiadou, K., & Claro, M. (2009). 21st Century skills and competences for new
millennium learners in OECD Countries. OECD Education Working Papers, 41.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is
Involved and What is the role of the computer science education community?
ACM Inroads, 2(1), 48-54.

Baytak, A., & Land, S. M. (2011). An investigation of the artifacts and process of
constructing computers games about environmental science in a fifth grade
classroom. Etr&D-Educational Technology Research and Development, 59(6),
765-782.

Bell, S. (2013). Programming ability is the new digital divide: Berners-Lee. In
Computerworld.

Biesta, G.J.]., & Burbules, N. C. (2003). Pragmatism and educational research. Lanham,
MD: Rowman & Littlefield.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., et al.
(2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care
(Eds.), Assessment and teaching of 21st century skills (pp. 17-66). Netherlands:
Springer.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. In Annual American Educational
Research Association meeting, Vancouver, BC, Canada.

Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-
writing in the middle school classroom. Journal of Media Literacy Education, 4(2),
121-135.

Carver, S. (1988). Learning and transfer of debugging skills: Applying task analysis
to curriculum design and assessment. In R. E. Mayer (Ed.), Teaching and learning
computer programming (pp. 259-298). Hillsdale, NJ: Erlbaum.

Ching, C. C., & Kafai, Y. (2008). Peer pedagogy: Student collaboration and reflection
in a learning-through-design project. Teachers College Record, 110(12),
2601-2632.

Clement, D. H., & Merriman, S. (1988). Componential developments in Logo
programming and environments. In R. E. Mayer (Ed.), Teaching and learning
computer programming (pp. 13-54). Hillsdale, NJ: Erlbaum.

Craver, S. M. (1988). Learning and transfer of debugging skills: Applying task
analysis to curriculum design and assessment. In R. E. Mayer (Ed.), Teaching and
learning computer programming (pp. 259-298). Hillsdale, NJ: Erlbaum.

Davis, E. A. (2003). Prompting middle school science students for productive
reflection: generic and directed prompts. Journal of the Learning Sciences, 12(1),
91-142.

Denner, J., & Werner, L. (2007). Computer programming in middle School: How
pairs respond to challenges. Journal of Educational Computing Research, 37(2),
131-150.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school
girls: Can they be used to measure understanding of computer science
concepts? Computers & Education, 58(1), 240-249.

Dewey, J. (1902/2008). The child and the curriculum including, the school and society.
In. New York: Cosimo.

Driscoll, M. P. (2005). Psychology of learning for instruction. Boston, MA: Ally and
Bacon.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (2nd
ed.). Boston: MIT Press.

Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2011). Improving teaching and
learning of computer programming through the use of the Second Life virtual
world. British Journal of Educational Technology, 42(4), 624-637.

Fay, A. L., & Mayer, R. E. (1994). Benefits of teaching design skills before teaching
LOGO computer programming: Evidence for syntax-independent learning.
Journal of Educational Computing Research, 11(3), 187-210.

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old
kindergarten children in a computer programming environment: A case study.
Computers & Education, 63, 87-97.

Feurzeig, W., & Papert, S. A. (2011). Programming-languages as a conceptual
framework for teaching mathematics. Interactive Learning Environments, 19(5),
487-501.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., et al.
(2008). Debugging: Finding, fixing and flailing, a multi-institutional study of
novice debuggers. Computer Science Education, 18(2), 93-116.

Garner, S. (2009). A quantitative study of a software tool that supports a part-
complete solution method on learning outcomes. Journal of Information
Technology Education, 8, 285-310.

Goel, S., & Kathuria, V. (2010). A novel approach for collaborative pair programming.
Journal of Information Technology Education, 9, 183-196.

Graczynska, E. (2010). ALICE as a tool for programming at schools. Natural Science,
2(2), 124-129.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of
the field. Educational Researcher, 42(1), 38-43.

Hague, C., & Payton, S. (2011). Digital literacy across the curriculum. Curriculum
Leadership, 9(10).

Hsiao, I. H., & Brusilovsky, P. (2011). The role of community feedback in the student
example authoring process: An evaluation of AnnotEx. British Journal of
Educational Technology, 42(3), 482-499.

Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content
analysis. Qualitative Health Research, 15(9), 1277-1288.

Hui, T. H., & Umar, I. N. (2011). Does a combination of metaphor and pairng activity
help programming performances of students with different self-regulated
learning level? The Turkish Online Journal of Educational Technology, 10(4),
122-129.

Hung, Y.-C. (2012). The effect of teaching methods and learning style on learning
program design in web-based education systems. Journal of Educational
Computing Research, 47(4), 409-427.

Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H., & Basawapatna, A. (2011).
Computational thinking pattern. In Annual American Educational Research
Association meeting. New Orleans, Louisiana, United States.

Ismail, M. N., Ngah, N. A,, & Umar, L. N. (2010). The effects of mind mapping with
cooperative learning on programing performance, problem solving skill and
metacognitive knowledge among computer science students. jJournal of
Educational Computing Research, 42(1), 35-61.

Jiau, H. C, Chen, J. C,, & Ssu, K.-F. (2009). Enhancing self-motivation in learning
programming using game-based simulation and metrics. IEEE Transactions on
Education, 52(4), 555-562.

Jonassen, D. (2011). Learning to solve problems: A handbook for designing problem-
solving learning environments. New York: Routledge.

Jonassen, D., Howland, J., Marra, R.M., & Crismond, D. (2008). Meaningful learning
with technology (3rd ed.): Pearson/Merrill Prentice Hall.

Kafai, Y., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and
learning in a digital world. In Lawrence Erlbaum.

Kafai, Y., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta
Kappan, 95(1), 61-65.

Kafai, Y., Fields, D. A., & Burke, Q. (2010). Entering the clubhouse: Case studies of
young programmers joining the online Scratch communities. jJournal of
Organizational and End User Computing, 22(2), 21-35.

Kahn, K., Sendova, E., Sacristan, A. I,, & Noss, R. (2011). Young students exploring
cardinality by constructing infinite processes. Technology, Knowledge and
Learning, 16(1), 3-34.

Katai, Z., & Toth, L. (2010). Technologically and artistically enhanced multi-sensory
computer-programming education. Teaching and Teacher Education, 26(2),
244-251.

Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the
kindergarten classroom: The impact on sequencing skills. Journal of
Educational Multimedia and Hypermedia, 21(4), 371-391.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice
programmers. ACM Computing Surveys, 37(2), 83-137.

Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging
curriculum: Instruction, learning, and transfer. Cognitive Psychology, 20(3),
362-404.

Kordaki, M. (2010). A drawing and multi-representational computer environment
for beginners’ learning of programming using C: Design and pilot formative
evaluation. Computers & Education, 54(1), 69-87.

Kose, U., Koc, D., & Yucesoy, S. A. (2013). Design and development of a sample
“computer programming” course tool via story-based e-learning approach.
Kuram Ve Uygulamada Egitim Bilimleri, 13(2), 1235-1250.

Kurland, D. M., Pea, R., Clement, C., & Mawby, R. (1986). A study of the development
of programming ability and thinking skills in high school students. Journal of
Educational Computing Research, 2(4), 429-458.

Kyungbin, K., & Jonassen, D. H. (2011). The influence of reflective self-explanations
on problem-solving performance. Journal of Educational Computing Research,
44(3), 247-263.

Lee, Y.-J. (2010). Developing computer programming concepts and skills via
technology-enriched language-art projects: A case study. Journal of
Educational Multimedia and Hypermedia, 19(3), 307-326.

Lehrer, R., Lee, M., & Jeong, A. (1999). Reflective teaching of Logo. Journal of the
Learning Sciences, 8(2), 245-289.

Lin, J. M. C,, & Liu, S. F. (2012). An investigation into parent-child collaboration in
learning computer programming. Educational Technology & Society, 15(1),
162-173.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the
models of programming concepts held by novice programmers. Computer
Science Education, 21(1), 57-80.

Margolis, J., Goode,]., & Bernier, D. (2011). The need for computer science.
Educational Leadership, 68(5), 68-72.

Mayer, R. E (1992). Teaching for transfer of problem-solving skills to computer
programming. In E. Corte, M. Linn, H. Mandl, & L. Verschaffel (Eds.). Computer-

http://refhub.elsevier.com/S0747-5632(14)00463-4/h0005
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0005
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0005
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0015
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0015
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0015
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0020
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0020
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0020
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0020
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0030
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0030
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0035
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0035
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0035
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0035
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0045
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0045
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0045
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0050
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0050
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0050
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0055
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0055
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0055
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0060
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0060
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0060
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0065
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0065
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0065
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0070
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0070
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0070
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0075
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0075
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0075
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0080
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0080
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0080
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0090
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0090
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0095
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0095
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0100
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0100
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0100
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0105
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0105
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0105
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0110
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0110
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0110
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0115
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0115
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0115
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0120
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0120
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0120
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0125
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0125
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0125
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0130
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0130
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0135
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0135
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0140
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0140
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0145
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0145
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0150
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0150
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0150
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0155
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0155
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0160
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0160
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0160
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0160
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0165
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0165
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0165
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0175
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0175
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0175
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0175
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0180
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0180
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0180
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0185
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0185
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0200
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0200
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0205
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0205
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0205
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0210
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0210
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0210
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0215
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0215
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0215
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0220
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0220
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0220
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0225
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0225
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0225
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0230
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0230
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0230
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0235
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0235
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0235
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0240
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0240
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0240
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0245
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0245
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0245
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0250
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0250
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0250
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0255
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0255
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0255
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0260
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0260
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0265
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0265
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0265
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0270
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0270
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0270
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0275
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0275
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0280
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0280

S.Y. Lye, J.H.L. Koh/Computers in Human Behavior 41 (2014) 51-61 61

based learning environments and problem solving (Vol. 84, pp. 193-206). Berlin,
Heidelberg: Springer.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery
learning? American Psychologist, 59(1), 14-19.

Mayer, R. E. (2010). Learning with technology. In H. Dumont, D. Istance & F.
Benavides (Eds.), Nature of learning: Using research to inspire practice. Paris, FRA:
Organisation for Economic Cooperation and Development (OECD).

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., et al.
(2008). Debugging: A review of the literature from an educational perspective.
Computer Science Education, 18(2), 67-92.

Miller, P. (2009). Learning with a missing dense: What can we learn from the
interaction of a deaf child with a turtle? American Annals of the Deaf, 154(1),
71-82.

Mills, K. A. (2010). A review of the “digital turn” in the new literacy studies. Review
of Educational Research, 80(2), 246-271.

Moreno,]. (2012). Digital competition game to improve programming skills.
Educational Technology & Society, 15(3), 288-297.

Moura, I. C., & van Hattum-Janssen, N. (2011). Teaching a CS introductory course:
An active approach. Computers & Education, 56(2), 475-483.

Ng, W. (2012). Can we teach digital natives digital literacy? Computers & Education,
59(3), 1065-1078.

NRC (2012). A framework for K-12 science education: Practices, crosscutting concepts,
and core ideas. The National Academies Press.

Olson, P. (2012). Why Estonia has started teaching its first-graders to code. In Forbes.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York:
Basic Books.

Papert, S. (1994). The children’s machine: Rethinking school in the age of the computer.
Basic Books.

Pea, R. (1983). Logo programming and problem solving. In American Educational
Research Association. Montreal, Canada.

Peppler, K. A.,, & Kafai, Y. (2007). From SuperGoo to Scratch: Exploring creative
digital media production in informal learning. Learning, Media and Technology,
32(2), 149-166.

Polya, G. (1957). How to solve it (2nd ed.). Princeton, NJ: Princeton University Press.

Ratcliff, C. C., & Anderson, S. E. (2011). Reviving the turtle: Exploring the use of logo
with students with mild disabilities. Computers in the Schools, 28(3), 241-255.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,
et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11),
60-67.

Robertson, J. (2011). The educational affordances of blogs for self-directed learning.
Computers & Education, 57(2), 1628-1644.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming:
A review and discussion. Computer Science Education, 13(2), 137-172.

Sengupta, P., Kinnebrew,]., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
computational thinking with K-12 science education using agent-based
computation: A theoretical framework. Education and Information
Technologies, 18(2), 351-380.

Smith, D. C., Cypher, A., & Tesler, L. (2000). Novice programming comes of age.
Communications of the ACM, 43(3), 75-81.

Sendergaard, H., & Mulder, R. A. (2012). Collaborative learning through formative
peer review: Pedagogy, programs and potential. Computer Science Education,
22(4), 343-367.

Tangney, B., Oldham, E., Conneely, C., Barrett, S., & Lawlor, J. (2010). Pedagogy and
processes for a computer programming outreach workshop - The bridge to
college model. IEEE Transactions on Education, 53(1), 53-60.

Theodorou, C., & Kordaki, M. (2010). Super Mario: A collaborative game for the
learning of variables in programming. International Journal of Academic Research,
2(4), 111-118.

Urquiza-Fuentes, ., & Velazquez-Iturbide, J. A. (2013). Toward the effective use of
educational program animations: The roles of student’s engagement and topic
complexity. Computers & Education, 67, 178-192.

Utting, 1., Cooper, S., Kélling, M., Maloney,]., & Resnick, M. (2010). Alice, greenfoot,
and scratch - a discussion. ACM Transactions on Computing Education (TOCE),
10(4), 17.

Wang, L. C., & Chen, M. P. (2010). The effects of game strategy and preference-
matching on flow experience and programming performance in game-based
learning. Innovations in Education and Teaching International, 47(1), 39-52.

Wang, Y., Li, H., Feng, Y., Jiang, Y., & Liu, Y. (2012). Assessment of programming
language learning based on peer code review model: Implementation and
experience report. Computers & Education, 59(2), 412-422.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3),
33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A - Mathematical Physical and
Engineering Sciences, 366(1881), 3717-3725.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving.
Journal of Child Psychology and Psychiatry, 17(2), 89-100.

Yang, Y.-F. (2010). Students’ reflection on online self-correction and peer review to
improve writing. Computers & Education, 55(3), 1202-1210.

Yin, R. K. (2014). Case study research: Designs and methods (5th ed.). Thousand Oaks:
SAGE Publications.

Zimmerman, B.], & Tsikalas, K. E. (2005). Can computer-based Learning
environments (CBLEs) Be used as self-regulatory tools to enhance learning?
Educational Psychologist, 40(4), 267-271.

http://refhub.elsevier.com/S0747-5632(14)00463-4/h0280
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0280
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0285
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0285
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0295
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0295
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0295
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0300
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0300
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0300
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0305
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0305
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0310
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0310
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0315
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0315
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0320
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0320
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0335
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0335
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0350
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0350
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0350
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0355
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0360
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0360
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0365
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0365
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0365
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0370
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0370
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0375
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0375
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0380
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0380
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0380
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0380
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0385
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0385
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0390
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0390
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0390
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0395
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0395
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0395
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0400
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0400
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0400
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0405
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0405
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0405
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0410
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0410
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0410
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0415
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0415
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0415
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0420
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0420
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0420
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0425
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0425
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0430
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0430
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0430
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0435
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0435
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0440
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0440
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0445
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0445
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0450
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0450
http://refhub.elsevier.com/S0747-5632(14)00463-4/h0450

	Review on teaching and learning of computational thinking through programming: What is next for K-12?
	1 Introduction
	2 Computational thinking
	2.1 Definition
	2.2 Computational thinking through K-12 programming tools

	3 Research purpose
	4 Search procedures
	5 Findings
	5.1 Research question 1: How has programming been incorporated into K-12 curricula?
	5.2 Research question 2: What are the reported outcomes in terms student performance in the computational thinking dimensions?
	5.2.1 Computational concepts
	5.2.2 Computational practices
	5.2.3 Computational perspectives

	5.3 Research question 3: What intervention approaches are being used to foster computational thinking?
	5.3.1 Reinforcement of computational concepts
	5.3.2 Reflection
	5.3.3 Information processing
	5.3.4 Constructing programs with scaffold

	6 Research implications
	6.1 Explore more classroom-based interventions
	6.2 Explore more studies in computational practices and computational perspectives
	6.3 Examining the programming process
	6.4 Analyzing qualitative data

	7 Instructional implications for K-12
	7.1 Authentic problem
	7.2 Information processing activities
	7.3 Scaffolding process
	7.4 Reflection

	8 Conclusion
	References

