
Students Want to Create Apps:

Leveraging Computational Thinking to Teach Mobile Software Development

Ilenia Fronza
Free University of Bolzano

Piazza Domenicani, 3
39100, Bolzano (Italy)

Ilenia.Fronza@unibz.it

Nabil El Ioini
Free University of Bolzano

Piazza Domenicani, 3
39100, Bolzano (Italy)
nelioini@unibz.it

Luis Corral
Free University of Bolzano

Piazza Domenicani, 3
39100, Bolzano (Italy)

Luis.Corral@unibz.it

ABSTRACT
Computational Thinking (CT) is recognised as one of the
fundamental skills of all graduates. Nevertheless, some is-
sues can emerge when trying to introduce CT into schools;
for example, teachers might not be willing to add topics to
their intensive syllabi. Therefore, out-of-school venues such
as summer schools can be considered a great opportunity for
exposure to CT. Moreover, summer schools allow students
to meet first hand researchers and help them pursue their
interest far from the regular school climate. High school
students in general are very curious for the creation of mo-
bile apps; however, most of them get discouraged because
they perceive this activity as a very difficult task. Here we
describe the MobileDev summer school, a one-week train-
ing and hands-on experience in current topics of software
development for mobile devices. The curiosity of the stu-
dents for developing mobile apps is used to introduce and
train CT via programming mobile applications through ex-
ercises (also with “pen and paper”) of increasing difficulty.
The school was repeated twice at our university and was tar-
geted to a reduced class of students concluding the third and
the fourth year of high school. Participants were in total 19
and coming from different types of schools. This paper de-
scribes the structure of MobileDev and discusses the results
to provide directions for further research.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Design, Human Factors

Keywords
Mobile development, Summer school, Computational think-
ing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGITE’15, September 30–October 3, 2015, Chicago, IL, USA.
c© 2015 ACM. ISBN 978-1-4503-3835-6/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2808006.2808033.

1. INTRODUCTION
Computer Science (CS) can teach how computational pro-

cesses can be applied on problems that occur during every-
day life and involve many disciplines. To do so, a person
needs to acquire the following skills [11]: 1) computer liter-
acy, which is the ability to use basic computer applications,
2) computer fluency, which consists of understanding at a
high level how computer systems work, and 3) Computa-
tional Thinking (CT) [15], which is “the thought processes
involved in formulating a problem and expressing its solu-
tion(s) in such a way that a computer - human or machine
- can effectively carry out” [16]. Despite this, in the last
decades CS curricula have often aimed at teaching computer
literacy. This choice resulted almost inevitably in the iden-
tification of the concept of CS with the concept of “ability
to use technology” [4].

CT is a key aspect of programming but is not unique to
CS; instead, it can be applied to many other fields, includ-
ing astronomy [5] and neurosciences [18]. CT is promoted
as “one of the fundamental skills” for everyone (not just for
computer scientists) [1, 15]. However, a small minority of
people graduates from colleges and universities; therefore,
the potential of any approach to integrate CT into the cur-
riculum is limited by a focus on undergraduate education
[12]. To address this issue, research has recently focused
on defining curricula for teaching these competencies. How-
ever, gaps still exist that call out for empirical inquiries,
in particular in the K-12 context [6]. Unfortunately, there
are often issues related to introducing CT into schools [10],
such as: 1) teachers should agree on changing their teaching
style, 2) syllabi are very intensive and there is a worry of not
being able to cover all the topics, 3) all the activities and
projects should be decided ahead of time, and 4) teachers of-
ten change from one year to another. For these reasons, out-
of-school venues are considered a possible solution since they
provide great opportunities for exposure to CT, as students
have the time to engage in challenging projects that are
needed to foster CT. Moreover, “out-of-school environments
can provide curricular flexibility, appropriate staff capacity,
infrastructure access, and access to effective programs” [10].
In particular, summer classes have a more relaxed atmo-
sphere. Moreover, students might attend different schools
and, therefore, have different backgrounds and skills.

In this paper, we describe MobileDev, a summer school
dedicated to high school students to learn CT via program-
ming mobile applications. The idea is to use students’ gen-
eral curiosity for mobile development to foster CT and to
convince them that, with these skills, mobile development

21

can be accessible to them. Each phase of the software de-
velopment process is used to foster specific skills of CT. The
summer school has been organised in two editions at our
University and was targeted to a reduced class of students
concluding the third and the fourth year of high school (i.e.,
11th and 12th grade of the K-12 structure). The paper is or-
ganised as follows: Section 2 provides background informa-
tion; Section 3 details the structure of MobileDev; Section
4 discusses the results and provides directions for further
research; Section 5 summarises this work and draws conclu-
sions.

2. BACKGROUND
In the last years, CT has caught the attention of a broad

academic community and many works have tried to capture
the essence of CT and to create an agreed definition, as CT
was a rather broad term. In 2011, the CS Teachers Associ-
ation (CSTA) and the International Society for Technology
in Education (ISTE) suggested an operational definition of
CT that provides a framework and vocabulary targeting K-
12 educators (Table 1) [7]. In 2012, Brennan and Resnick
developed another operational definition of CT that involves
three key dimensions: computational concepts, computa-
tional practices, and computational perspectives [3].

Table 1: Skills improved by CT [7].
Skill Definition

1 Data collection Gather appropriate information
2 Data analysis Make sense of data, find pat-

terns, and draw conclusions
3 Data representa-

tion
Depict and organise data in ap-
propriate graphs, charts, words,
or images

4 Problem decom-
position

Break down a problem into
smaller, manageable parts

5 Abstraction Reduce complexity to define
main idea

6 Algorithms and
procedures

Find a series of ordered steps to
solve a problem

7 Automation Have computers or machines do
repetitive or tedious tasks

8 Simulation Run experiments using models
9 Parallelization Organise resources to simulta-

neously carry out tasks to reach
a common goal

CT is usually learned through programming; despite that,
fostering CT should not be interpreted as an attempt to in-
crease the number of professionals in CS. Programming is a
key tool for supporting the cognitive tasks involved in CT [6],
but there are other practices that let the students embrace
and exercise CT skills. For example, teachers and students
should use an appropriate vocabulary to describe problems
and solutions. Moreover, they should learn to accept wrong
solutions, to work as a team and to use decomposition tech-
niques, abstraction, negotiations (to integrate multiple so-
lutions), and consensus-building [2]. Students should also
become familiar with the control flow of an algorithm, and
be able to abstract and represent information. To this end,
Lodi [8] suggests to propose exercises that require to visu-
alise a “mental model” of the solution, so that students learn
to think in terms of the program itself.

Graphical programming environments are probably the
most popular tools to foster CT; such environments allow
to program by combining blocks that are compatible with
forms and provide graphical interfaces to control the actions
of the different dynamic actors. Therefore, the simplicity
and the intuitiveness of these tools (what you see is what
you get) help to light the spark of curiosity and implant
hunger in the students to want to learn more from the early
sessions by focusing on design and construction, rather than
dealing with syntax problems in programming.

Most recent research addressed the issue of CT assess-
ment, to judge the effectiveness of any curriculum by mea-
suring what children have learned [3, 14]. Large gaps, how-
ever, still exist that call out for empirical inquiries. Grade
and age-appropriate curricula for CT still need to be de-
signed or improved, also exploring the possibility to use com-
puting as a medium for teaching other subjects. Moreover,
most of research has been conducted in a undergraduate
context; therefore, empirical studies in schools are needed
to understand the types of problems faced during the first
programming experiences that go beyond syntactical issues.
Additionally, student attitudes toward computing should be
explored [6].

2.1 App Inventor
The practical framework used in MobileDev, App Inven-

tor1, is a web based application created by the Massachusetts
Institute of Technology (MIT). It is a visual development en-
vironment for building Android applications, and it is com-
posed of two main views: 1) designer, which allows users
to drag-and-drop all the components needed to design their
application (i.e., graphical interface as well as all the non
visual components such as sensors), 2) blocks, which allows
to attach actions and add behaviour to the components de-
fined in the designer. App Inventor is considered an at-
tractive platform for engaging students at all levels in the
computing curriculum [9]; therefore, effort has been spent in
designing courses to teach programming using App Inventor
[17]. Moreover, since it allows problem driven learning [9],
this tool is a good framework to teach CT [13].

3. MOBILEDEV
MobileDev is a summer school on mobile development

that provides a one-week classroom training and hands-on
experience in current topics of software development for mo-
bile devices. It is targeted to a class of high school seniors
and it takes place at our University. The only requirement
to enrol in MobileDev is to have just concluded the third or
the fourth year of high school. No restrictions on the type
of high school are given, to involve students from different
backgrounds. This way, the environment of MobileDev can
be more stimulating, as students can experience working in a
multidisciplinary environment and accepting different points
of view. When they are engaged in a discussion about the
usefulness of CS, different backgrounds and opinions also
help students to understand how CT (and programming)
can be useful in their lives, even if they are not going to be
professional programmers. Participation is free of charge.
MobileDev has been organised in two editions, with a to-
tal participation of 19 students (4 female and 15 male) that
covered a range of types of schools (Table 2).

1http://appinventor.mit.edu/explore/

22

Table 2: Participants’ demographics.
High School Type Number of Participants
Technical High School 6
Scientific High School 7
Liberal Arts High School 3
Linguistics High School 3

3.1 Goal
The goal of MobileDev is to provide students with the the-

oretical basis and the practical experience to develop sim-
ple applications for mobile devices (e.g., cellular phones or
tablets) operated by the Android OS. In particular, Mo-
bileDev helps students learning the analytical thinking skills
they need to develop mobile applications. To this end, Mo-
bileDev promotes conditions that foster the growth of skills
and competencies of CT (Table 1). The educational objec-
tive to be pursued is to introduce and train CT via program-
ming mobile applications through exercises (also with “pen
and paper”) of increasing difficulty [4]. The intuitive visual
environment of App Inventor has been used as a trojan horse
to introduce CT concepts to students.

3.2 Structure
MobileDev is a five-day (40 hours) training course start-

ing on Monday morning and concluding on Friday afternoon.
Even though the school counts on several hours of introduc-
tory lectures, it is mainly driven by laboratory exercises. By
the end of the school, students are expected to present a fi-
nal project that applies the content of the course. Table 3
presents the structure of MobileDev. The summer school is
divided into three parts: i) theoretical knowledge, ii) learn-
ing the practical framework, and iii) application of the the-
oretical knowledge using the practical framework. In each
part, particular importance has been attributed to organised
work and documentation.

Table 3: Timetable structure.
Day Morning Afternoon

1 Introduction to CT with real world examples
2 Introduction Operating

systems and Android
Introduction to App In-
ventor and its toolset

3 Examples with App In-
ventor

Exercises with App In-
ventor

4 Examples with App In-
ventor

Working on projects

5 Working on finalizing
the projects

Projects presentations

3.2.1 Theoretical knowledge
The first part of the school is dedicated to a discussion on

the role of CS in our life and on its possible applications.
Students are involved actively in the discussion and report
about their experience and the usage of CS in their schools.
Then, the CT skills required for software development are
introduced. Students work on simple real examples in which
they have to understand the problem itself and design a
proper solution.

The teacher helps the students to exercise CT skills, propos-
ing first non-software examples, evolving to programming-

specific problems. To foster CT, even in the simplest ex-
ample, students need to pay attention to the design of the
solution. For instance, when students are asked to solve a
simple operation, like preparing a sandwich. Students have
to identify the problem, explain a high-level solution, and
then model and structure an algorithm down to the small-
est details. At times, students are surprised after noting
that, according to their algorithm, they skipped steps that
seem to be obvious for them (like ”take a knife with the
hand” before ”spread mustard in the bread”), but then it is
explained that when one needs to give precise instructions
to a computer, there is no way to skip steps, even though
they seem evident to a human.

3.2.2 Learning the practical framework
After a short introduction to App Inventor, students are

guided to solve some simple exercises of increasing degree of
difficulty, following the steps of CT (Table 1) and dedicating
special attention to the design of the solution. For instance,
an example proposed in the lecture consists of exploring the
basic organisation of a graphic user interface. This example
includes the visual aspects of a graphic user interface, but
also requires an introduction on how to implement the basic
functionality on a component like a button. Students are
shown how to write a small method, and how to associate
the “click” event of the button to the method. With the
example, we create a functioning mobile application, which,
even though with a basic behaviour, illustrates the capacity
of the product to receive an input from the user, elaborate it
internally, and produce an output. These concepts are then
extended in examples and exercises of increasing complexity,
up to the creation of the final project.

3.2.3 Application of the theoretical knowledge using
the practical framework

To put together the theoretical and the practical knowl-
edge acquired during MobileDev, students implement some
of the examples introduced in the theoretical session in App
Inventor. The goal we set for this phase is to assist them
on learning the whole process of software development from
defining requirements till delivering a working system. The
next Section details the projects students worked on during
the two editions of MobileDev.

3.3 Projects
After gaining knowledge on how to analyse the problems

and design an appropriate solution using App Inventor, one
day is dedicated to the development of a final project. Before
starting to work on the technical details of the projects,
students have the possibility to decide either to work in pairs
or individually. In the two editions of MobileDev, we ended
up having 3 pairs and 13 one person teams.

During all the steps of the project, we follow an Agile
approach, as it facilitates flexibility and collaboration, and
it fits our short time frame. The first step in the process
starts by collecting projects’ ideas. The students are free to
choose whatever idea they want to develop and our role is to
help them understand the level of complexity and feasibility.
In the two editions of MobileDev, 13 student have proposed
new ideas whereas 3 students have proposed extensions to
exercises we did during the course. While the students were
looking for the projects’ ideas we observed that most of them

23

were using the Internet to browse existing Android apps to
get inspired.

Once the project idea is clear, ideas are developed through
iterations. Each iteration is composed of the following steps:

• feasibility: an essential step is assessing the feasibility
of the proposed features. Due to the lack of knowl-
edge of some features of App Inventor as well as the
limitation of App Inventor’s environment, students are
encouraged to look at the documentation and code ex-
amples to understand whether the features they want
to implement are possible or not. Our role is to assist
them when they can not find any solution;

• analysis: the analysis phase consists of looking at the
features that will be implemented at the iteration and
study their logical flow, the components needed to im-
plement them and how to integrate them with the rest
of the application;

• design: organising a working solution based on the
analysed context. Identifying actors, roles and be-
haviours. In this phase, we assist students to set up a
simpler design to eventually develop easier solutions.
Moreover, in this phase students design with pen and
paper the visual aspects of the application (Figure 1);

• development: developing the features by using the de-
signer for the GUI and the non-visual components and
using the blocks to connect the actions to the compo-
nents;

• testing: running the newly developed features either
on the emulator or on a real phone and check whether
the features behave correctly or not;

• integration: this step does not apply to all cases, de-
pending on the type of application. We have noted
that in some cases features were developed separately
and then they had to be integrated; in other cases, in-
stead, each feature was built on top of existing ones,
therefore, the integration was already done during de-
velopment.

Table 4 shows how each of the phases of the software de-
velopment process helps in fostering CT skills (Table 1).

Table 4: CT skills fostered during software develop-
ment phases (phases are defined in Section 3.3).

1 2 3 4 5 6 7 8 9
Feasibility X
Analysis X X X X
Design X X X X
Development X X X X
Testing X
Integration X X X

The kind of applications developed as part of the school
span a large variety of types and goals. In general, a vast
majority are applications of a moderate level of complexity
that aim to provide interaction between the user and the ap-
plication, that is, applications that react to a certain input
from the user and provide a result. Examples of this kind of
applications are games or quizzes. A second group of appli-
cations focused on exploiting the communication features of

Figure 1: Mobile app design: manual sketches.

the cellular phone, creating interfaces for placing phone calls
or messaging services. Finally, a smaller group of products
display information unidirectionally, with a minimal inter-
action.

Internally, the applications can be relatively complex from
the logic point of view. Developers are required to structure
their solutions, identify and set the variables that are neces-
sary to keep track of what is happening in the application,
and to set the control blocks to guarantee the correct flow of
execution of the application (for instance, conditions, loops,
etc.). Moreover, developers should provide the means to
guarantee the interaction with the user; this is facilitated
by the native controls that App Inventor provides for the
management of the input means of the cellular phones, for
instance tap or swipe gestures, as well as the output channels
like sounds, images, text, etc.

Table 5 shows the list of projects developed by partici-
pants; all the projects are available in the website of Mo-
bileDev2.

3.4 Assessment
A framework was developed to assess the development of

CT (i.e., practices, concepts, and perspectives), following
the guidelines in [3]. Learners are engaged in a conversation
about their progress, and at the same time their product is
critically examined. For example, the following questions are
asked: 1) what might you need to do next? 2) How would
you fix it? 3) Have you used a loop? Where?. Answers can
be used to provide help and to check that all the members
of the team are progressing, even if with their own pace.

4. RESULTS
The quality and functionality of the final projects let us

consider that the outcome of MobileDev is clearly positive.
The diverse profiles of the participants show how, regardless
of their background (see Table 2), students can exercise CT
skills to walk through the process of identifying a problem
to solve it in the form of a functional product. By using
App Inventor, students implement their solutions without
requiring specialised training on software development tools.

2http://www.mobiledev-summerschool.it

24

Table 5: List of projects.
Name Description Students
Flag Quiz A game to challenge your knowl-

edge of the European flags by
naming a country after checking
their flag

1

Rorschach
Test

With this app, the user can gen-
erate images on perfect symme-
try

1

English
Phonetics

Application that uses the vocal
synthesis library to propose ex-
ercises to improve the pronunci-
ation of the English language

1

My Fa-
vorites

This app lets the user store
bookmarks of web pages and
then share them using social
tools

1

Phone
Manager

Application to compose a new
SMS message or place a call us-
ing the keyboard or vocal syn-
thesis

1

Automatic
SMS com-
poser

If you are busy, use this app to
send back automatically a cus-
tom answer

1

CloneApp An alternative version of an app
to chat with other contacts

2

m-Card An app to design mobile Busi-
ness Cards

1

Colorful
Circles

In this app, the user generates
canvas with random circles of
different colors

1

ShootGame A classic ”shoot-em-up” game,
aiming an objective to shoot it

1

Snake A clone of the Snake game,
proposing a different version
that introduces more challenges

2

Mole
Mash (2
alternate
versions)

A clone version of the Mole
Mash game, to use your finger-
tips to hit a moving figure

1

Mobile
Arkanoid

Clone of the Arkanoid game; a
custom version for one player

1

Macedonia A clone version of Fruit Ninja.
The user creates a fruit salad by
tapping over the fruits that ap-
pear randomly on the screen

2

Moreover, students are required to describe the architecture,
design and implementation of their products, revisiting the
customised development process that was followed during
the summer school sessions. As a consequence, all partici-
pants explain their products in terms of a series of sequences
expressed in blocks, which are carried out by the different
GUI elements at hand.

Despite being time consuming, the assessment framework
helped in revealing conceptual gaps. Moreover, participants
did not perceive the conversations as an assessment; instead,
they took advantage of those moments to get help or solve
issues, and to this end they were happy to explain their
work. Therefore, it is worth conducting more experiments
to validate the assessment framework.

Using the assessment framework, we assessed the develop-
ment of the three dimensions of CT; moreover, we checked
that the projects were correctly functioning and responding
to requirements. We are working on integrating these two
types of assessment in future, by checking also if projects
contain CT features [13]. A third type of assessment is rep-
resented by data on participants’ satisfaction. The fact that
participants were excited to show their friends and family
what they created can be used as an informal indicator of
satisfaction. Nevertheless, we are planning to somministrate
pre and post surveys during future editions of MobileDev.

It is important to note that the informal environment cre-
ated by MobileDev is an ideal atmosphere to boost the cre-
ativity of the participants, and to encourage their curiosity
to discover, try and achieve, without being formally evalu-
ated. Students are invited to identify problems, architect
and design their solutions on their own, while the role of the
teaching staff is to direct and organise their approaches, and
advise on the feasibility of the projects using the available
development tools.

Having participants of diverse backgrounds also is a re-
source of outmost importance, since students discuss prob-
lems from different standing points, brainstorm ideas from
different approaches, and work in teams where the skills may
complement each other. Moreover, the fact that the final
product is a mobile application increases the interest and
curiosity of students, as they belong to a range of age that
makes strong use of devices like cellular phones or tablets.

MobileDev promotes gender balance and improves the
participation of women in the summer school. A positive
experience with CS is given to them during the MobileDev,
and particular attention is given to overcoming the stereo-
type of the male“nerd”. Girls’ interest in CS is stimulated by
showing how it can improve their life, in its social, working,
medical and environmental aspects. Moreover, examples are
given of women who have had success in Computer Science.

According to the informal feedback provided by students,
a very appreciated value of MobileDev is the possibility of
solving a problem by creating an actual product. This is
underlined on the presentation of the final projects, when
participants are able to experience the functional value of
their products by executing and utilising them in the real
platform, that is, in a mobile phone or tablet.

5. CONCLUSION AND FUTURE WORK
In this paper, we described the design and implementa-

tion of a short course to teach Computational Thinking at
High School Level. The MobileDev summer school organised
and carried out at our University successfully helped in the
assimilation and exercising of CT skills, exposing students
with little or no background in Computer Science to design
and implement a mobile software application. From the first
day, participants take an active role in analysing problems,
architecting solutions, implementing software tools, and val-
idating them. The accomplishments of the teaching program
are reflected by the set of applications that students success-
fully develop working alone or in pairs, under the supervision
of the teaching staff.

The impact of MobileDev has as well attracted the atten-
tion of the local K-12 Education Authority of our Province,
who has expressed its support and encouragement for the re-
alisation of a new edition of the summer school during 2015.
Moreover, the organisation board of the summer school, in

25

coordination with the local Education Authority, is explor-
ing the possibility of recognising credit points to the par-
ticipants; the credit points shall be granted based on the
number of hours spent.

CT is a resource that is valuable for everybody, even for
students who will not pursue a Computer Science major.
Initiatives like MobileDev strive for creating a proper en-
vironment to exercise and implement CT skills, assisting
participants to develop a working product that they may
consider very proudly as their own creation.

6. REFERENCES
[1] ACM and IEEE. Computer science curricula 2013.

Technical report, Association for Computing
Machinery (ACM) and IEEE Computer Society, 2013.

[2] V. Barr and C. Stephenson. Bringing computational
thinking to k-12: what is involved and what is the role
of the computer science education community? ACM
Inroads, 2(1):48–54, Feb. 2011.

[3] K. Brennan and M. Resnick. New frameworks for
studying and assessing the development of
computational thinking. In 2012 Annual Meeting of
the American Educational Research Association
(AERA’12), Vancouver, Canada, 2012.

[4] I. Fronza, N. El Ioini, A. Janes, A. Sillitti, G. Succi,
and L. Corral. If i had to vote on this laboratory, i
would give nine: Introduction on computational
thinking in the lower secondary school: Results of the
experience. Mondo Digitale, 13(51):757–765, 2014.

[5] J. Gray, A. S. Szalay, A. R. Thakar, P. Z. Kunszt,
C. Stoughton, D. Slutz, and J. vandenBerg. Data
Mining the SDSS SkyServer Database. In Distributed
Data and Structures 4: Records of the 4th
International Meeting, pages 189–210, 2002.

[6] S. Grover and R. Pea. Computational thinking in
k–12. a review of the state of the field.
EDUCATIONAL RESEARCHER, 42(1):38–43,
jan/feb 2013.

[7] ISTE and CSTA. Computational thinking. teacher
resources. second edition.
http://csta.acm.org/Curriculum/sub/CompThinking.html,
2011. Accessed: Dec. 2014.

[8] M. Lodi. Imparare il pensiero computazionale,
imparare a programmare. In DIDAMATICA, 2014.

[9] R. Morelli, T. de Lanerolle, P. Lake, N. Limardo,
E. Tamotsu, and C. Uche. Can android app inventor
bring computational thinking to k-12? In Proc. 42nd
ACM technical symposium on Computer science
education, SIGCSE’11. ACM, 2011.

[10] National Research Council. Report of workshop of
pedagogical aspects of computational thinking.
Technical report, National Research Council of the
National Academies, 2011.

[11] L. Perković, A. Settle, S. Hwang, and J. Jones. A
framework for computational thinking across the
curriculum. In Proceedings of the Fifteenth Annual
Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’10, pages
123–127, New York, NY, USA, 2010. ACM.

[12] A. Settle, B. Franke, R. Hansen, F. Spaltro,
C. Jurisson, C. Rennert-May, and B. Wildeman.
Infusing computational thinking into the middle- and
high-school curriculum. In Proceedings of the 17th
ACM Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’12, pages 22–27, New York, NY, USA, 2012. ACM.

[13] M. Sherman and F. Martin. The assessment of mobile
computational thinking. J. Comput. Sci. Coll.,
30(6):53–59, 2015.

[14] L. Werner, J. Denner, S. Campe, and D. C.
Kawamoto. The fairy performance assessment:
Measuring computational thinking in middle school.
In Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education, SIGCSE ’12, pages
215–220, New York, NY, USA, 2012. ACM.

[15] J. M. Wing. Computational thinking. Commun. ACM,
49(3), Mar. 2006.

[16] J. M. Wing. Computational thinking benefits society.
Social issues in computing, jan 2014.

[17] D. Wolber, H. Abelson, and M. Friedman.
Democratizing computing with app inventor.
GetMobile: Mobile Comp. and Comm., 18(4):53–58,
2015.

[18] F. Yong, S. Dinggang, and C. Davatzikos. Detecting
Cognitive States from fMRI Images by Machine
Learning and Multivariate Classification. In Computer
Vision and Pattern Recognition Workshop, page 89,
2006.

26

