ON THE DIFFICULTY OF LEARNING TO PROGRAM

Tony Jenkins
School of Computing
University of Leeds
Leeds, UK.
tony@comp.leeds.ac.uk
http://www.comp.leeds.ac.uk/tony/

ABSTRACT

Few students find learning to program easy. This
paper considers why this is so by examining what
makes this most basic of skills so difficult to acquire.

There are many factors at work. Some are simply
inherent in the subject while others have more to do
with the modus operandi of teaching departments.
Others are deeply interlinked with the expectations,
attitudes, and previous experiences of the teaching
staff and their students.

If computing educators are ever to truly develop a
learning environment where all the students learn to
program quickly and well, it is vital that an
understanding of the difficulties and complexities
faced by the students is developed.

At the moment the way in which programming is
taught and learned is fundamentally broken.

Keywords
Programming, Aptitude, Learning Styles

1. INTRODUCTION

Few computing educators of any experience would
argue that students find learning to program easy.
Most teachers will be accustomed to the struggles of
their first year students as they battle in vain to
come to grips with this most basic of skills and many
will have seen students in later years carefully
choosing options so as to minimise the risk of being
asked to undertake any programming.

This is a sad and depressing state of affairs. After
all, computers are quite useless without programs
and programmers to develop them. What is the
point of teaching anything about computers to a
student who is incapable of producing even the
simplest of programs?

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.

3rd Annual LTSN-ICS Conference, Loughborough University
© 2002 LTSN Centre for Information and Computer Sciences

Much of the existing research, in the computing
education literature at least, focuses on new and
interesting ways to teach programming. Papers
describe how visual hooks and props can be used to
engage an audience, or how programming can be
taught almost by subterfuge through the medium of
a game. These are all fine ideas, but there is
seldom any sign of any concrete evidence that these
ways of teaching have any impact on learning. 1t is
true that students will enjoy them and that they will
give good course feedback, but there is precious
little evidence that they have learned anything that
they would not have from a more traditional lecture.

Less attention has been paid to the subject of
programming itself, and what has been written tends
to lurk in rarely explored corners of the literatures of
psychology and cognitive science. If students
struggle to learn something, it follows that this thing
is for some reason difficult to learn. If educators
hope to teach it effectively, they must understand
precisely what it is that makes learning to program
so very difficult for so very many students.

Programming seems to occupy a particular place of
prominence in the first year of degree-level
computing courses. It seems to dominate the
students' experience; those teaching other courses
often complain that the students are spending all
their time on programming. There is clearly
something wrong (or there is some fundamental
misunderstanding) if one part of the curriculum can
dominate a whole course in this way.

2. THE QUESTION OF APTITUDE

It is sometimes argued that the students who find
programming difficult are simply and solely those for
whom programming is difficult. There is nothing
inherently difficult in the subject; it is simply that
some students have no aptitude. The skills often
cited are problem solving and mathematical ability.

Evidence for the existence of aptitude in this sense
is inconclusive at best. It is possible to find studies
([2], for example) that hint at some relationship
between programming skills and experience in
mathematics and it is possible to find studies that

conclude that there is no connection. An experiment
at the University of Leeds designed to stream a
programming class based on the results of an

aptitude test [3], for example, showed no
relationship at all between the final result in
programming and measured "aptitude". Other

studies [5] have shown that no demographic factor
is a strong predictor of success in programming.

It certainly helps to have some experience of
programming before starting a programming course
[6], but this is not the same thing as aptitude. There
exist various programming aptitude tests, but the
evidence for their effectiveness is inconclusive at
best [11].

If it is not possible to measure aptitude for
programming in some convenient way, and if it is
possible that "aptitude" for programming does not
even exist, the focus for understanding the difficulty
of learning to program must turn to a more cognitive
view of the learning process.

3. COGNITIVE FACTORS

Two cognitive factors present themselves as
possibilities that might make learning to program
difficult — learning style and motivation. It is possible
that there might be some particular learning style
that will allow a student to acquire programming skill
quickly and easily, or it might be that students
require a particular form of motivation. If a student
tends to adopt the wrong styles or has the wrong
motivation, they will find learning to program difficult.

3.1 Learning Styles

Students prefer to learn in different ways. Some
may regard learning as a solitary process and may
learn best that way. Others may prefer a more
dynamic learning environment and may learn best
by discussions with their peers. Some subjects may
demand a particular learning approach but, without
guidance, students will tend to adopt the style they
prefer or which has served them best in the past. It
is a crucial responsibility of the teacher to ensure
that the students adopt the most appropriate
learning approach for the subject at hand.

The best-known classification of learning styles
divides learning into ‘"deep" and “surface"
approaches [10]. Deep learners concentrate on
gaining an understanding of a topic, while surface
learners will concentrate on little more than
memorising. It is easy to see how a particular
method of teaching (and especially assessment)
might drive a student to one of these approaches.

This classification seems to work well for a subject
that is essentially a body of knowledge. History, for
example, requires surface learning for lists of dates
but deep learning for analysis and understanding. It

54

is clear that the surface approach comes first and
the knowledge acquired is then developed in deep
learning. Programming is not like this. It is not a
body of knowledge, it is a skill.

It might appear at first sight that deep learning is
vital for programming, providing understanding that
can be applied in new problem areas. However, it
could equally be argued that programming can be
learned as essentially a process that amounts to
simple "pattern matching" where common problems
are spotted and known working solutions applied.
This approach sounds very much more like a form of
surface learning.

It seems that the best strategy lies between these
two extremes. Surface learning can be useful for
remembering the details of syntax, or issues such as
operator precedence, but elements of deep learning
(and hence understanding) are required if a true
competence is to be developed.

This is the key to the difference. The two learning
styles must be applied at the same time. It is not
sensible to memorise the rules of the syntax of
some programming language and then to move on
to apply it. This puts programming beyond the
educational experience of most students; it requires
a mixture of learning styles that most, if not all, of
them have not had to apply before.

3.2 Motivation

Students approach computing degrees with a variety
of motivations [7]. Some may have a genuine
interest in the subject (intrinsic motivation); some
may see their degree as little more than a means
towards a lucrative career (extrinsic motivation);
others may simply be trying to please their parents
or family (social motivation).

The form of motivation does appear to be a factor. It
has been shown that, perhaps not surprisingly,
students who struggle in programming are more
likely to have a primarily extrinsic motivation than
their colleagues who excel [13]. Then again it has
also been shown [8] that students generally maintain
some form of motivation throughout their
programming course, even if that comes to hinge on
a negative factor such as fear of failure.

Programming students are motivated to succeed.
They do not fail on purpose [8]. They will have to
learn in a new way but that should not be a problem
if their teacher appreciates and addresses this need.
Perhaps the root of the problem lies in the subject.
Is there something inherent in programming that
makes it especially difficult to learn?

4. THE DIFFICULTY OF PROGRAMMING

"Programming" is a complicated business. An
experienced programmer draws on many skills and
much experience. Some of the skills required bear
little obvious relevance to the process of producing
program code.

Some of the required skills are obvious; problem
solving ability and some idea of the mathematics
underlying the process are essential. But there are
more. A programmer must be able to use the
computer effectively, must be able to create the
program in a file, compile it, and find the output. The
program produced must be tested, and bugs found
and corrected. These are easy skills to identify, and
presumably they are addressed in most
programming courses.

There are less obvious skills. These might be
classed as '"life skills". Programming is normally
taught as a fundamental subject at the start of a
degree course. This is a difficult time for many
students — a time of transition as they adapt to life
and study at university. They may well be living
away from home for the first time, they may struggle
to make new friends and find their feet in a new
environment, and they may struggle to come to
terms with managing their own finances and their
own private and study time.

In the midst of this they will be encountering some of
the most basic material in their programming course.
This is potentially quite challenging material that is
going to form the basis of the rest of their learning.
They will be lost if they do not understand this. This
is difficult enough material to master when a student
is well settled, but departments' insistence on
teaching this during a period of transition can only
increase the difficulty.

4.1 Multiple Skills

Programming, then, is not a single skill. It is also not
a simple set of skills; the skills form a hierarchy [14],
and a programmer will be using many of them at any
point in time. A student faced with learning a
hierarchy of skills will generally learn the lower level
skills first, and will then progress upwards [1]. In the
case of coding (one small part of the skill of
programming) this implies that students will learn the
basics of syntax first and then gradually move on to
semantics, structure, and finally style.

Teachers will be all too familiar with the student who
produces programs with no indentation, intending to
“indent it all later", or without any comments, content
to add these later (and only then because there are
marks for the comments in the assessment). No
experienced programmer would work in this way,
and these are bad habits to fall into, but this is an

55

inevitable side effect of the order in which

programming skills are learned.

This approach to learning is often reinforced by
lectures that concentrate on the minutiae of syntax,
and by textbooks that adopt much the same
approach. This leads to the student who hopes to
gain an understanding of programming and plans to
achieve this by reading a textbook. Programming is
learned by programming, not from books.

4.2 Multiple Processes

Programming is not only more than a single skill; it
also involves more than one distinct process. At the
simplest level the specification must be translated
into an algorithm, which is then translated into
program code. In experienced programmers it is
also possible to identify an intermediate process
whereby the algorithm is mapped to something
resembling a "recipe" for the programme, based on
previous experience [9].

The most difficult part of the process is the first,
translating the specification into the algorithm. This
is also the most important, as it is crucial that a
correct and efficient algorithm is used as the basis of
any coding. Given a correct algorithm the other
processes are essentially mechanical.

Therefore, a student must master three distinct
processes. Teaching (and learning), however, can
concentrate on the low level issues of syntax at the
expense of the higher level, more complex, process
of designing an algorithm. Worse, any consideration
of algorithm design and efficiency can be relegated
to another, apparently unrelated, part of the course!
In any case there is surely little point in lecturing
students on syntax when they have no idea of where
and how to apply it.

Teachers will be familiar with students who can
follow the lectures in the programming course, who
can dissect and understand programs, but who are
totally incapable of writing their own program. They
have not mastered all the processes; they can code,
but they cannot produce an algorithm.

4.3 The Language

Much has been written about the best language to
use for teaching (or learning), and some might argue
that too much has been written. There is scant solid
evidence that any language is any better or any
worse than any other, and the choice continues to
be driven largely by the "flavour of the month" in
industry.

Most teachers would agree that the purpose of an
introductory programming course is to teach the
students to program; the intention is not to, for
example, "teach them Java". The language used is

no more than a vehicle whereby the main objective
is to be achieved.

It is hard for students to make this separation. While
they grapple with the idiosyncrasies of whatever
language they are being taught, it is very difficult to
think about higher level abstract concepts. It is only
when a programmer has had experience of more
than one language that these concepts actually
become apparent. And most introductory
programming courses teach only one language.

The languages used for teaching were not designed
for teaching. There exist languages designed for
teaching (Pascal, LOGO), but any department using
one of these today would be an object of ridicule.
Many would worry about the effect on recruitment of
not teaching a language that was used in industry.

Languages designed for serious use by serious
programmers are hardly suitable for the novice. As
a trivial example, consider the everyday notion of
"or", which also has a meaning in programming [15].
A novice programmer faced with the task of
programming a conditional statement "if the answer
is y or n" will be familiar with the everyday linguistic
meaning of "or", and may well code (in C):

if vt
This makes perfect sense, especially when read

aloud, but is clearly semantic nonsense. Worse, this
will compile and appear to work in some cases!

(answer == 'n')

The language used for teaching should be designed
for that purpose.

4.4 Educational Novelty

Programming is a new subject for many of the
students who take programming courses. In his
classic article on teaching programming (which
should be required reading for all who teach
programming) Dijkstra argues that learning is a slow
and gradual process of transforming the "novel into
the familiar" [4]. He goes on to suggest that
programming is what he terms a "radical novelty" in
which this comfortable tried and tested learning
system no longer works. The crux of the problem is,
according to Dijkstra, that radical novelties are so
"disturbing" that "they tend to be suppressed or
ignored to the extent that even the possibility of their
existence ... is more often denied than admitted".

A particular feature of programming (and one that
reinforces Dijkstra's message) is that it is "problem-
solving intensive" [12] — it requires a significant
amount of effort in several skill areas for often a very
modest return. At the same time it is "precision
intensive" [12] — the modest success that can be
achieved by a novice programmer requires a very
high level of precision, and certainly a much higher
level than most other academic subjects. Dijkstra

56

also notes that the "smallest possible perturbation”
in a program of one single bit can render a program
totally worthless. This is precision indeed.

Students who start a programming course in higher
education have come from a familiar academic
setting. There they were studying topics with which
they were, on the whole, comfortable and familiar,
and which they had been studying for some years.
They were probably used to performing well
academically and had developed a set of tried,
tested and trusted learning and study skills. To
arrive in a setting where they are confronted with a
totally new topic that does not respond to their
habitual study approaches, and where a single
semi-colon is the difference between glorious
success and ignominious failure, must surely
represent a "radical novelty" in Dijkstra's terms. It is
perhaps not study skills that are needed, but coping

skills. These are found in few programming
syllabuses.

4.5 Interest

Learning (or perhaps here "being taught")

programming can be very dull. Lectures covering
the details of syntax are never going to be especially
inspiring, and exercises that involve simple
mathematical manipulations of collections of student
marks, stock levels, baseball statistics, or bank
account details are never going to set the pulse
racing. Yet a glance in many programming texts will
yield many turgid examples of each of these.

At its best programming can be an enjoyable,
creative activity, and many students derive great
enjoyment from their programming. They enjoy it
even more (and learn more) when they are allowed
to work on assignments that inspire them. It is a
shame that so few assignments do indeed inspire.

4.6 Reputation and Image

Programming courses acquire the reputation of
being difficult. This view is passed to the new
students by their predecessors, and is exaggerated
in the telling. This perhaps makes it acceptable,
even expected, that a student will struggle.

At the same time, there is the public image of a
"programmer". This is of a socially inadequate
"nerd", spending all hours producing arcane and
unintelligible code, fuelled by pizza and caffeine. It
is hard to imagine students aspiring to this image.

If students approach a course with an expectation
that it will be difficult, and with a negative image of
those who excel in the subject, it is very hard to
imagine their being especially motivated. And
students who are not motivated will not succeed.

4.7 Pace

In a university programming is taught, and therefore
learned, to a set timescale. It maters not whether
this is one or two semesters or even a number of
years. The fact remains that at some point the
programming course will end and the students who
pass will be "able to program". This means that the
pace of the instruction is not under the students'
control (and it is more than likely that different
students in the class will learn at different paces).

This will lead to the student who has missed a basic
concept and who then cannot follow the next lecture.
There is no going back; the course is behaving very
much as a high-speed train with no brakes. Such a
student will quickly come to the view that "they just
can't do programming" (the educationalists call this
learned helplessness), and will attribute this to the
perceived difficulty of the subject.

The pace of the course is often driven mostly, of
course, by the needs of assessment. This scheme
may be reasonable for many subjects, but it is quite
ridiculous for learning a skill such as programming.

5. CONCLUSIONS

Programming is certainly a complicated skill to
master, and learning to program is correspondingly
complex. There are many features of the skill that
contribute to this complexity, and this paper has
described some of the more important. Some of
these issues centre on the nature of the
programming skill, while others have more to do with
the ways in which the participants teach and learn. It
must be possible to overcome these obstacles. It
must be possible to learn to program; if it were not
there would be no programmers. But how many
programmers learned to program solely from a
course in higher education? Few indeed.

| talk to many students about their programming
course. The most common comment is that
programming is "boring and difficult". When | ask
whether it is boring because it is difficult or difficult
because it is boring, they are seldom sure. But they
remain adamant that it is both. Teaching a subject
that is boring and difficult is a tricky task indeed. The
essential problem is that programming represents
an "educational novelty". It represents this for those
who teach as much as for those who learn. It is
clear that the students' tried and tested learning
styles do not work when applied to programming. It
is equally obvious that the teachers' tried and tested
teaching fair little better.

So, why teach programming in this way?
Presumably because that is the way it's always
been done. If this no longer works, something will
have to change. Learning to program is indeed

57

difficult, but it should not be as difficult as it currently
appears.

What should change?

e Programming should never be taught before
the second year of any course;

e The language used should be chosen for
pedagogic suitability and not because it is
popular in industry;

e Programming should be taught by those
who can teach programming and not those
who can program.

e Programming courses should be designed
to be flexible to allow different students to
learn in different ways;

e There should be no summative (continuous)
assessment to ease pressure on students.

that

supply

e Departments should acknowledge
programming is difficult and
adequate support to students.

That would be a decent start.

6.
[1]

REFERENCES

C. Bereiter and E. Ng. Three Levels of Goal
Orientation in Learning. Journal of the Learning
Sciences, Vol. 1, pp 243-271, 1991.

Pat Byrne and Gerry Lyons. The Effect of
Student Attributes on Success in Programming.
Proceedings of ITICSE 2001, pp 49-52, 2001.

John Davy and Tony Jenkins. Research-Led
Innovation in Teaching and Learning
Programming. Proceedings of ITiCSE '99, pp 5-
8, 1999.

Edsger W. Dijkstra. On the Cruelty of Really
Teaching Computing Science. Comm. ACM,
Vol.32, pp 1398-1404, 1989.

Gerald E. Evans and Mark G. Simkin. What
Best Predicts Computer Proficiency? Comm.
ACM, Vol. 32, pp 1322-1327, 1989.

Dianne Hagan and Selby Markham. Does it
help to have some programming experience
before beginning a computing degree
programme? Proceedings of ITICSE 2000, pp
25-28, 2000.

Tony Jenkins. The Motivation of Students of
Programming. Proceedings of ITICSE 2001, pp
53-56, 2001.

Tony Jenkins. The Motivation of Students of
Programming. MSc Thesis, University of Kent
at Canterbury, 2001.

Katherine McKeithen, Judith S. Reitman, Henry
H. Reuter and Stephen C. Hirtle. Knowledge
Organisation and Skill Differences in Computer

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

Programmers. Cognitive Psychology, Vol. 13,
pp 307-325, 1981.

[10]F. Marton and R. Saljo.
Differences in Learning [I: QOutcome and
Process. British Journal of Educational
Psychology, Vol. 46, pp 4-11, 1976.

[11]Lawrence J. Mazlack.
Acquire Programming SKill.
23, pp 14-17, 1980.

[12]D. N. Perkins, Steve Schwartz and Rebecca
Simmons. Instructional Strategies for the
Problems of Novice Programmers. In R. E.
Mayer (ed), "Teaching and Learning Computer
Programming", pp 153-178, Lawrence Erlbaum
Associates, 1988.

On Qualitative

Identifying Potential to
Comm. ACM, Vol.

58

[13]Julie Sheard and Dianne Hagan. Our Failing
Students: A Study of a Repeat Group. In
Proceedings of ITICSE 98, pp 223-227, 1998.

[14]Kathryn D. Sloane and Marcia C. Linn.
Instructional Conditions in Pascal Programming
Classes. In R. E. Mayer (ed), "Teaching and
Learning Computer Programming", pp 207-235,
Lawrence Erlbaum Associates, 1988.

[15]James C. Spohrer and Elliot Soloway. Novice
Mistakes: Are the Folk Wisdoms Correct? In E.
Soloway and J. C. Spohrer (eds), "Studying the
Novice Programmer", pp 401-416, Lawrence
Erlbaum Associates, 1989.

	Introduction
	The Question of Aptitude
	Cognitive Factors
	Learning Styles
	Motivation

	The Difficulty of Programming
	Multiple Skills
	Multiple Processes
	The Language
	Educational Novelty
	Interest
	Reputation and Image
	Pace

	Conclusions
	References

