
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/315815605

Programming education strategies

Conference Paper · January 2014

CITATIONS

4
READS

42

2 authors:

Some of the authors of this publication are also working on these related projects:

BlueEyes - Assistive Technologies, Bluetooth Low Energy, Beacons, Acessability View project

CeAMatE - Centro de Apoio à Matemática na Engenharia View project

Anabela Gomes

Instituto Politécnico de Coimbra

64 PUBLICATIONS 566 CITATIONS

SEE PROFILE

Fernanda Maria Brito Correia

Instituto Politécnico de Coimbra

20 PUBLICATIONS 28 CITATIONS

SEE PROFILE

All content following this page was uploaded by Anabela Gomes on 11 February 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/315815605_Programming_education_strategies?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/315815605_Programming_education_strategies?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/BlueEyes-Assistive-Technologies-Bluetooth-Low-Energy-Beacons-Acessability?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CeAMatE-Centro-de-Apoio-a-Matematica-na-Engenharia?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anabela_Gomes2?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anabela_Gomes2?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Politecnico_de_Coimbra?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anabela_Gomes2?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernanda_Correia3?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernanda_Correia3?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Politecnico_de_Coimbra?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernanda_Correia3?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anabela_Gomes2?enrichId=rgreq-09e5ac6a634036eaa3aa931a832d6736-XXX&enrichSource=Y292ZXJQYWdlOzMxNTgxNTYwNTtBUzo1OTI4NTk2NDAxMjc0ODhAMTUxODM2MDE2MTc1NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

PROGRAMMING EDUCATION STRATEGIES

Anabela Gomes 1, Fernanda Brito Correia 1
1 Department of Informatics and Systems Engineering (DEIS), Engineering Institute of

Coimbra (ISEC), Polytechnic Institute of Coimbra (IPC), Portugal

Abstract
Results in programming courses are often very disappointing mainly when the teachers invest a lot in
the subject. There could be a variety of reasons in the origin of this problem. However, the
assessment approach used to evaluate students can also have influence. Even if we do not obtain
brilliant results, we think it is possible to lead students to obtain the minimum skills required in an initial
programming course. This paper shows the application of a methodology that achieved some positive
results. Through an approach that required students to do more frequent evaluations, it was possible
that students devoted more attention to the programming course with a higher cadence and
frequency.

Keywords: Programming teaching and learning, Assessment.

1 INTRODUCTION
The universal problems associated with programming education in many higher education institutions
[1-5] leading to high failure levels are well known. Our institution, the Informatics and Systems
Department (DEIS) from the Engineering Institute of Coimbra (ISEC) of the Polytechnic Institute of
Coimbra (IPC), Portugal, is also facing this problem. Several efforts have been made throughout the
world, like the development of tools to assist the teaching/learning of initial programming [11-21].
Although there are reports of some positive results, with the use of some of these tools there are no
positive and generalized if one in particular is chosen. Several authors point out different problems,
such as programming being naturally difficult, the lack of preparation of students, mainly respecting
mathematical skills and lack of abstraction competences, the incorrect study and teaching methods
applied to this type of subject, the usage of too complex development environments to meet the
pretended needs, among others [6, 7, 8, 9, 10]. In general we agree that all these factors can
contribute to failure. However, we think it is our responsibility as teachers of an introductory
programming course, in our case the 1st year, 1st semester Biomedical Engineering degree, which is
facing the same problems, to try and propose strategies that can change the panorama. It is in this
perspective that we present this work focusing indirectly on the study methods and including different
assessment strategy.

2 THE STUDY
Our study focuses on the introductory programming course of the 1st year and 1st semester of
Biomedical Engineering degree of the ISEC/IPC. This course uses as introductory language the C
language and it will be followed by a 2nd semester course with C# and object oriented concepts. The
subjects covered include the basic concepts taught in an introductory programming course using a
procedural programming language. As follows, data types, operators and expressions, standard input
and output formatted data, data structures, functions, arrays and string manipulation. In this course we
use C language, but in the first three weeks students solve programming problems using sequential,
selection and repetitive structures through pseudo code. Only after a certain comprehension of the
subject the problems are solved using the C language giving emphasis to the syntax details. This
course has 5 contact hours, including 1 hour of theoretic class and 3 hours of lab classes per week in
two groups of about 30 students each. In addition teachers offer more 6 hours per week to clarify
students’ doubts, during the entire semester.

Although failure rates from this course in previous academic years were not very significant they were
more than expected when considering the effort that teachers had expended in this course. Thus, in
the 2012/2013 academic year we tried a different strategy concerning the assessment method that
from the teachers´ perspective could translate into better results. In previous years, students had only
one assessment, which took place at the end of the year. In the current year teachers decided to
make six additional tests corresponding to intermediate topics considered relevant for a gradual

understanding of the following topics. Although this is a strategy that holds an extra workload for the
teachers, they embarked on this because they considered it a way to direct students in devoting
themselves to more continuous study and study time towards the course. We consider programming
to be a type of subject requiring intensive training, so it was the best way found for the students to
dedicate more study hours to the course along the semester.

We also encouraged students to participate as much as possible and expose their doubts. However
the number of students per class prevented an effective individualized and permanent student
monitoring during class. As we wanted to be as attentive as possible to students that could be future
failure cases we used a tool (questionnaire) that would allow us to eventually pay more attention to
these students. We used a survey, described in the next section, which according to their authors
allows the prediction of future failure cases in programming. Additionally, teachers used a set of
strategies to try to improve outcomes in programming learning. Every week teachers were available to
support students’ difficulties. They had 6 hours per week entirely dedicated to clarify students’ doubts.
Teachers also told students to feel free to send emails with doubts whenever they wanted. There was
also an e-learning platform where teachers uploaded useful content to students according to the topics
taught and the progression of the students.

2.1 Questionnaire
Predicting the success of students participating in introductory programming courses has been an
active research area for several years. Until recently, no variables or tests have had any significant
predictive power. However we decided to use a test developed by Dehnadi and Bornat at Middlesex
University [22]. We administered the questionnaire early in the first class of the course. According to
their authors this test enables to classify students according to their consistency in answering a set of
similar questions. The overall hypothesis is that only consistent students will be able to learn to
program. The test consists in 12 small programs. Each program consists of two or three variable
declarations and one, two, or three assignment statements. Fig. 1 shows a sample of it. However we
made a small change to each question. We removed the type of variable, which we considered
irrelevant for our purpose.

1. Read the following
instructions and select the
right answer in the columns.

a = 10;

b = 20;

a = b;

The new values of a and b are:

0 a = 10 b = 10

0 a = 30 b = 20

0 a = 0 b = 10

0 a = 20 b = 20

0 a = 0 b = 30

0 a = 10 b = 20

0 a = 20 b = 10

0 a = 20 b = 0

0 a = 10 b = 30

0 a = 30 b = 0

Outros valores para a e b:

 a = b =

 a = b =

 a = b =

Use this column for
drafts.

Fig. 1 Sample of a question of Dehnadi and Bornat test

We wanted further to correlate the results of our questionnaire with the students’ marks in the final
course tests and with the final programming mark. The idea is to verify the validity of this correlation.

In other words, we wanted to verify if there is a positive correlation between a student’s mental model
and the student’s ability to learn programming. These results are presented in the next section.

2.2 Continuous Assessment Activities
In the 2012/2013 academic year students of the mentioned course could choose between two different
modes of assessment. The first mode was similar to the one followed in previous years, consisting
only in the final exam. The other second mode consisting in continuous assessment activities
including six tests, which covered the topics teachers considered more relevant. These activities
corresponded to 50% of the final mark, the other 50% being assessed in the final exam. Students
were advised by teachers to follow the second evaluation model. Teachers thought that this model
would be better to learn programming and consequently obtain academic success. Tests were spaced
in time intervals, coinciding with the temporal moments that teachers considered suitable to focus on
important matters for a proper development in the programming learning.

In Test 1 (T1) an encoding in pseudo code was given to students whose aim was to determine the
largest of three values. The coding consisted of a set of nested selections. The purpose of the coding
was communicated to the student and the student had to point out the truth of each of the 22
sentences marking them as T (True) or F (False). The statements were designed to determine if
students completely understood the selections and thereof the explicit and implicit logical conditions.

In Test 2 (T2) coding in C language was provided to the students, which consisted of nested
selections. In each selection there was a condition composed of two logical variables. For each one a
particular sentence should be printed. The student should indicate the message to be printed when
the variables assumed different values. The objective was to verify if the student realized in its fullness
the values assumed implicitly and explicitly for each variable in each condition and also the resulting
logic condition.

In Test 3 (T3) a set of codifications in C language was given to students. In some cases they should
indicate which of the presented encodings produced the desired output. In other cases, they should
indicate which of other presented outputs was produced by the given encoding. The coding focused
on simple repetitive structures, in order to determine if students understood in its fullness its basic
behaviour. Namely, which were the initial condition, the stop condition and the condition that allows
the continuation in the repetitive structure as well as their influences in the entire repetitive process.

In Test 4 (T4) students were asked to complete coding in C language, which included mixed selection
and repetitive structures. The objective was for the students to complete a program that simulated the
calculation of the final scores of a group of students attending a course with a certain number of
ranges. The score for each student could be obtained through two alternative modes chosen by
students. Each one of the modes included different aspects such as the classification of tests with
different weights, the classification of the final exams and students’ attendance to classes. The code
was given to students completely structured. Students should only complete aspects such as "The
selection structure was following all the elements (students) of the repetitive structure”, "The condition
that checked if the number of student absences was a valid value", "The condition that checked if the
number of absences allowed the student to be assessed" or " Simple formulas for the calculation of
other statistical expressions".

In Test 5 (T5) students had to answer two questions where for each one they should indicate, which of
the presented results would be generated by the presented encodings. Although both encodings
included repetitive structures they had a different nature. One had several nested repetitive structures
each containing simple expressions. The other had just a simple repetitive structure, but included a
call to a function and mathematical expressions of higher complexity.

The Test 6 (T6) focused on elementary aspects of vectors. It included mainly questions implying the
use of simple repetitive structures that had to follow and change the values of the vector elements.
This was the first test where students had to make codifications. So, the more complex question
included the writing of a function receiving as arguments two vectors and its size. The first was a
vector of chars and the second a vector of integers. The function should enable the writing, on the
screen, of each element of the vector of chars (one character) by repeating this a number of times
equal to the integer value stored in the corresponding element of the vector of integers. Each element
of the vector of chars should be written on a new line.

3 RESULTS
In this section we present the results achieved by students in the mentioned programming course in
the last two academic years, namely 2011/2012 and 2012/2013, using different assessment
approaches. Considering all 69 students enrolled in the course, in 2011/2012 the approval rate was
43% and the 68 students enrolled in 2012/2013 the approval rate was 65%. However we can’t
interpret this information in such a straightforward manner. In 2012/2013 only one student decided not
to do the exams while in 2011/2012 there were 16 students that never made any assessment. So in
this case, and considering only the students that made at least one assessment we have different
values. In the 2011/2012 the approval relative rates were 57% and in the school year 2012/2013 were
66%. However, we are interested in the analyses of the new methodology applied in the 2012/2013
academic year, so our analysis will be concentrated in this academic year.

As teachers we are highly engaged in contributing to the resolution of this problem and so in the next
section, a more detailed analysis of the obtained results will be made. It is our intention to weight the
new approaches in order to try to continue minimizing this problem.

3.1 Questionnaire Results
The idea of the questionnaire is to predict success or failure even before students have had any
contact with any programming language. So we only applied this questionnaire to new students. The
questionnaire contains 12 questions similar to the one in Figure 1, giving rise to a 12-tuples describing
the mental models applied by a student (e.g. m1, m2, ..., m12)) where mi represents a mental model.
The 12-tuples is used to assign each student to one of three categories:

• The consistent group. The students who use the same mental model for most of the
questions (regardless of which model).

• The inconsistent group. The students who use several mental models to answer the
questions.

• The blank group. The students who refuse to answer the questions.

In the consistent group we have identified 5 different mental models (M1, M2, M5, M10 and M11),
which were captured by options in the questionnaire. We tried to cross the students’ mental models
with the results they obtained in the different assessment components and also with the final global
result. However, it was not possible to obtain correlations. From the 68 students, we only got 21 valid
tests, not enough to obtain statistical validations. Some students missed the first lesson where this test
was done. Some other students made mistakes that forced us to invalidate the tests. However,
through an intuitive analysis, we couldn’t verify the idea presented by the test author. There were
students classified in the consistent group that failed the programming courses. As well, there were
students classified in the inconsistent group that not only passed but also had good marks in the
course. There could be many reasons for these results and it probably doesn’t mean that the test was
not valid. It is our intention to continue with this test next year and explore it more deeply.

3.2 Continuous Assessment Results
There were 68 students enrolled in this programming course. Tests T1, T2, T3, T4, T5 and T6 were
made by 65, 64, 58, 59, 62 and 55 students, respectively.

The marks averages of each of the tests T1, T2, T3, T4, T5 and T6 were 84.63%, 85.47%, 46.98%,
53.81%, 56.13% and 50.27%, respectively. However, the analysis in terms of average reveals little
about the results, so Table 1 presents additional statistical information.

Table1 Statistical information of the six tests

 T1 T2 T3 T4 T5 T6

Nr of students 65 64 58 59 62 55

Mean 84.63% 85.47% 46.98% 53.81% 56.13% 50.21%

Median 90.00% 90.00% 40.00% 54.00% 50.00% 54.25%

Mode 100.00% 100.00% 40.00% 56.50% 95.00% 55.00%

Std. Dev. 16.163 20.485 23.414 17.322 38.530 25.124

Var. 261.237 419.618 548.193 300.063 1484.565 631.231

Min. 34.00% 10.00% 0.00% 17.00% 0.00% 0.00%

Max 100.00% 100.00% 95.00% 95.00% 100.00% 98.50%

In order to better clarify the results Fig. 2 represents the sequence of graphs corresponding to the
marks obtained by each student in each test. In each graph we can observe in the x-axis numbers
representing the students and in y-axis the classification obtained by the students in each test.

We can observe that the marks obtained in the two initial tests were very encouraging for sudents.
The ones obtained in test T1 were a little better than the ones obtained in test T2 mainly, in our
perspective, due to one reason. Even though the type of matter was of the same topic (selection
structures) we used more complex conditions in test T2. Although this test was already in C language
while the test T1 was in pseudocode we think that this did not influence the results. It was confirmed
by students, when asked about the difficulty of the C language interpretation, concerning selection
structures, that it was as difficult as pseudocode.

These good results obtained in these two tests can mean several things. In our perspective we believe
that the students understood the selection structures and made a proper study. This does not mean
that they have acquired all the skills needed to solve problems "from scratch" with the same level of
difficulty. However, at that phase, we as teachers were happy with these results. We agree that in a
first phase it is important that students understand the concepts, then students should be able to write
small code fragments within a well-defined context using these concepts and finally students should
be able to produce their own encodings. We believe that programming is an activity that requires time
until their complete mastering. So, we agree that in an early stage students should do activities of
code interpretation and then gradually students could write small code fragments, evolving up until
they can write full programs. However, next year we intend to ask students to start codifying earlier.
So, perhaps in the second test instead of having two interpretation questions we should put one
interpretation question and the other should involve codifying. Both should be of the same knowledge
level. With this, we want to verify if they really understand selection structures.

The sharp fall in the ratings in Test 3 (T3) reveals the difficulties that students have in understanding
the repetition structures. Thus we consider that students have not studied enough to understand these
concepts. Most students when questioned on the subject stated that they had devoted about the same
time to both subjects (selections and repetitions), but only in Test 3 they realized the difficulty of the
latter topic (repetition structures).

In this test we noticed a very important aspect especially in the first question when students had to
choose which one of the several codifications would generate the presented output. Although all the
encodings included repetitive structures they have, for us, different codification difficulty. Some of
them use the repetitive structure for while others use the repetitive structure while. We noticed that
students understood the codifications using while better than the codifications using for. Perhaps for
students the for structure is a very condensed structure. In a unique line of code all three expressions
exist. The while is perhaps more “visually” understandable. Another aspect was noted. Some of the
codifications were implemented in an increasing manner (the initial value was smaller and increased in
each iteration) and others in a decreasing manner (the initial value was bigger and decreased in each
iteration). Students found the first type easier. Surprisingly, some students told teachers they weren’t
aware that it was possible to have a repetitive structure in a decreasing manner. Teachers questioned
themselves if they weren’t able to pass this message. So, next year it is a question that should be
stressed. To note that in this test the students had only to analyse code and they did not need to do
any coding yet. We believed that if we proposed students activities consisting in the complete write of
a program, with this type of topic, certainly they would not have yet a mental structure allowing them to
structure the whole program, what could demotivate them more.

Even though the students had to codify in test T4, the test was structured to minimize the algorithmic
and codifying procedure. We consider that the results obtained in that test were mainly due to the big

amount of mathematics formula involved. Students reveal difficulty in presenting even basic calculus
to solve elementary problems.

Test T5 contained a question with multiple nested repetitive structures each containing simple
expressions. The other question was just a simple repetitive structure, but included a call to a function
and contained mathematical expressions of a higher complexity. To note that, in these questions, the
students hadn’t to do any codification but only to analyse code. Some students obtained better results
in one question and others in another. However, the differences were not significant nor could we find
any pattern among the answers of these two types of questions. Many students revealed many
difficulties in both questions, which can be seen in the 6th graph of Figure 2 by the low results
obtained. This test also contained another question but we considered it as not being important for this
analysis. It consisted only in the filling of blank spaces corresponding to the input parameters and
return value of a function.

Test T6 focused on elementary aspects of vectors. The more complicated situations were simple
repetitive structures that had to follow and change the elements of the vectors. Despite the general
classifications of this test not being considered good, students considered this type of topic easily
understandable. However, they stated they had not studied due to having another test that week. This
aspect reflects the insufficient and inadequate study methodologies. The majority of students only
study when they have assessments, instead of doing it continuously. It also appears that students lack
maturity. They miss a lot of lectures (without attendance mandatory) but they don’t miss the labs (with
two thirds attendance mandatory). They also don’t attend the office hours on a regular bases except
when close to tests or exam dates.

We can conclude that the results between tests T3, T4, T6 and the final exam are strongly correlated.
Thus, students who get better marks in test T3, also have better marks in tests T4, T6 and exam. As
already mentioned, the test T5 is a mysterious exception. We also consider that the mastering of the
topics included in the test t3 forward reveal the tendency of students to get successful programming
results.

Obviously these tests only served to guarantee a minimum follow-up of the matter. To succeed in the
final examination, students not only had to make more complex encodings, dealing particularly with
matrices, but also involving other topics as strings. Our initial goal was also to include these topics in
the tests. However, the topic of strings was only taught in the last 2 weeks of classes. In this period
the students had other tests and as such, we did not want to overload them. However, students were
alerted to the fact that strings were a very important topic to which they should devote many hours of
study outside lessons. We want to stress that the type of the programming content is not so deeply
explored as it was in a computer science degree. For instance topics such as pointers, structures, files
or linked lists are not taught. The programming course in analysis belongs to a Biomedical
Engineering degree.

Fig. 2 Students marks in each of the six tests (left to right and up to down)

As already mentioned the relative approval rates were not very different in 2011/2012 and 2012/2013.
The same happened with the median marks of the approved students, the majority of these students
obtained a final classification around 10 values in both years. We expected better results in the
2012/2013 academic year, however, we seem to understand the underlying reason. Even though most
students managed to get positive in the six tests, the global marks obtained in all the tests were
relatively low. The same happened with the marks obtained in the exam. Concerning the tests the
reasons were already discussed. Concerning the exams we considered mainly two aspects. On one
hand, students do not put much effort because they thought the degree of difficulty of the exam was
similar to the one used in the tests. On the other hand the final exam had 2 question one about strings
and the other on bi-dimensional arrays. Although these topics are more complex we also think that
these students did not study and practice these topics adequately. Perhaps if these topics had been
involved in a previous evaluation they would have had better results. It is also our intention to include
these topics in the interspersed tests next year.

However, our intention is to concentrate on the results obtained in the academic year 2012/2013. The
following graphs (Fig. 3, Fig. 4 and Fig. 5) enable us to compare, for each student, the mean of the
results in the total of the six tests, with their results in the final exam and the final result, respectively.
To note that the total of six tests are classified to 10 values and the exam is also classified to 10
values, so that the total mark is classified on a scale from 0 to 20 (used in Portugal). So the
information on x-axis of each graph is presented accordingly.

Fig. 3 Median of the six Tests, for each student

We can observe that, as was expected, the results obtained in the final exam were the worsts, what
subsequently influenced the final result. The correspondent statistic can be observed in the Table 2.

To get a better and consistent analysis, considering the importance of our methodology, we also
crossed the marks obtained in each of the tests with the final grades obtained in programming. This
information is presented in Table 2.

Fig. 4 Classification of the final exam, for each student

Fig. 5 Final marks for each student

Table 2 Statistical information for each assessment part

 Tests

(0-10)

Final
Exam

(0-10)

Final
Grades

(0-20)

Nr of students 65 57

Mean 5.43 4.68 10.83

Median 5.45 4.63 10.00

Mode 4.11 4.25 10.00

Std. Dev. 1.965 1.857 3.065

Var. 3.861 3.451 9.397

Min. 0.58 1.00 4.00

Max 9.56 8.90 18.00

To get a better and consistent analysis, considering the importance of our methodology, we also
crossed the marks obtained in each of the tests with the final grades obtained in programming. This
information is presented in Table 3.

The correlation analysis enabled us to extract the following conclusions. Students who obtained the
best marks in the exams were also the ones who obtained the best marks in all the tests.
Consequently, students who obtained better final results were also the ones who obtained better
results in partial tests. There were strong correlations between the scores of all the tests and the exam
scores, except with test 5 (T5). In this test, we consider that there were essentially three types of

classifications corresponding to three types of answers. Twenty-six students answered correctly
almost all the test (the two relevant questions), nineteen students answered correctly nearly half of the
test (one relevant question) and ten students did not answer correctly any question. Even though we
didn´t find any strong justification we think that it was a strange test for the students perspective.
There was a big variation in the results. The majority of students obtained 95% but there were also
students with 0%. However there are some questions to answer. Had the level of difficulty increased
more than some students expected? Were some students satisfied with previous results thinking they
can study less to obtain satisfactory results? Was the workload of the other courses increased not
letting time to students dedicate to that course? After all we consider that, even though the overall
classifications (tests and final exam) were not high, the realization of all these tests had a positive
influence in the exams results and consequently in the final classification.

Table 3 Person correlation between the tests marks and the exam marks (**at 0,01 level (2-tailed))

 Exam marks

T1 marks .369**

T2 marks .372**

T3 marks .383**

T4 marks .459**

T5 marks X

T6 marks .461**

4 CONCLUSION
The poor results associated with a programing course in analyses led teachers to change the
assessment methodology. In this paper the authors compare two different assessment methodologies
applied in the two academic years of 2011/2012 and 2012/2013. The global results obtained in the
academic years of comparison had been not very different, however a small increasing in the success
rate was verified. It is our intention, not to give up using the strategies that we believe may help to
minimize the problem. In that way, in the current school year we will follow a similar assessment
methodology but with some specific strategies to engage the students in subjects in which they show
more difficulties. In particular, we intend to conduct analysis of errors made by students supplemented
with individual interviews in order to better understand the causes of these errors and also to
individually motivate these students to improve their results.

REFERENCES
[1] Jenkins, T. “On the difficulty of learning to program.” In the 3rd Annual LTSN-ICS. 22-27 August

2002. Proceedings of the 3rd Annual LTSN-ICS. Loughborough University, United Kingdom, p.
53-58.

[2] Lahtinen, E., Ala-Mutka, K. and Järvinen, H. “A study of difficulties of novice programmers.” In
the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education. 27-29 June 2005. Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education. Monte de Caparica, Portugal, p.
64-68.

[3] Lister, R., Simon, B., Thompson, E., Whalley, J. L. and Prasad, C. September 2006. “Not
seeing the forest for the trees: novice programmers and the SOLO taxonomy.” SIGCSE Bulletin,
Vol. 38 (3), pp. 118-122.

[4] Bruce, C. S. and McMahon, C. A. 2002. Contemporary Developments in Teaching and Learning
Introductory Programming: Towards a Research Proposal. Teaching and Learning Report.
Faculty of Information Technology, Queensland University of Technology, Brisbane, Australia.

[5] Lister, R. “On blooming first year programming, and its blooming assessment.” In the
Australasian Conference on Computing Education. 4-6 December 2000. Proceedings of the
Australasian Conference on Computing Education. Melbourne, Australia. ACM New York, NY,
USA, p.158-162.

[6] Gray, W. D., Goldberg, N. C. and Byrnes, S. A. June 2007. “Novices and programming: Merely
a difficult subject (why?) or a means to mastering metacognitive skills? [Review of the book
Studying the Novice Programmer]”. Journal of Educational Research on Computers, Vol. 9 (1),
pp. 131-140.

[7] Dijkstra, E. W. December 1989. “On the Cruelty of Really Teaching Computing Science.”
Communications of the ACM, Vol. 32 (12), pp. 1388-1404.

[8] Byrne, P. and Lyons, G. September 2001. “The effect of student attributes on success in
programming.” SIGCSE Bulletin, Vol. 33 (3), pp. 49-52.

[9] Martins, S., Mendes, A.J. e Figueiredo, A.D. “Student reflexions as an influence in the dynamics
of an introductory programming course.” In the 41st Annual Frontiers in Education Conference.
12-15 October de 2011. Proceedings of the 41st Annual Frontiers in Education Conference.
Rapid City, USA, pp. T1A1-T1A6.

[10] Bennedsen, J.; Caspersen, M. Abstraction ability as an indicator of success for learning object-
oriented programming? SIGCSE Bullet. 2005, 38, 39–43.

[11] Mendes, A.; Mendes, T. VIP—A tool to visualize programming examples. In Proceedings of the
EACT 88—Education and Application of Computer Technology, Malta, October 1988.

[12] Gomes, A.; Mendes, A.J. SICAS: Interactive system for algorithm development and simulation.
In Computers and Education: Towards an Interconnected Society; Ortega, M., Bravo, J., Eds;
Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 159-166.

[13] Buck, D. e Stucki, D. J. (2001). JKarelRobot: a case study in supporting levels of cognitive
development in the computer science curriculum”. ACM SIGCSE Bulletin, 33 (1), 16-20.

[14] Gomes, A. Ambiente de suporte à aprendizagem de conceitos básicos de programação. MSc
Thesis, Faculdade de Ciências e Tecnologia da Universidade de Coimbra: Coimbra, Portugal,
November 2000.

[15] Cooper, S., Dann, W. e Pausch, R. (2000). Alice: a 3-D tool for introductory programming
concepts. Journal of Computing in Small Colleges, 15 (5), 107-116.

[16] Esteves, M.; Mendes, A.J. OOP-Anim, a system to support learning of basic object oriented
programming concepts. In Proceedings of the CompSysTech'2003—International Conference
on Computer Systems and Technologies, Sofia, Bulgaria, 2003.

[17] Rebelo, B.; Mendes, A.; Marcelino, M.; Redondo, M. Sistema Colaborativo de Suporte à
Aprendizagem em Grupo da Programação—SICAS-COL. In Proceedings of the VII Simpósio
Internacional de Informática Educativa, Leiria, Portugal, November 2005.

[18] Redondo, M.A.; Bravo, C.; Ortega, M.; Verdejo, M.F. PlanEdit: An adaptive tool for design
learning by problem solving. In Proceedings of the 2nd International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems (AH2002), Malaga, Spain, May 29-31, 2002;
Springer: Berlin; pp. 560–563.

[19] Naps, T. (2005). Jhavé – Supporting Algorithm Visualization. IEEE Computer Graphics and
Applications, 25 (5), 49-55.

[20] Areias, C.M.; Mendes, A. ProGuide: A dialogue-based tool to support initial programming
learning. In Proceedings of the 3rd E-Learning Conference—Computer Science Education,
Coimbra, Portugal, September 2006.

[21] Marcelino M.; Mihaylov T.; Mendes A. H-SICAS, Handheld algorithm animation and simulation
tool to support initial programming learning. In Proceedings of the 38th ASEE/IEEE Frontiers in
Education Conference, New York, NY, USA, October 22-25, 2008.

[22] Dehnadi, S., Testing Programming Aptitude, In 18th Workshop of the Psychology of
Programming Interest Group, page 22-37. University of Sussex, (September 2006).

View publication statsView publication stats

https://www.researchgate.net/publication/315815605

