

ulisses.ulisboa.pt

UNIVERSITY OF LISBON
INTERDISCIPLINARY STUDIES
ON SUSTAINABLE ENVIRONMENT AND SEAS

Co-funded by the
Erasmus+ Programme
of the European Union

ECOTOXICOLOGY TESTS & BIOMARKERS – PART I

Concepts, Tests, Biomarkers, Statistics

Bernardo Duarte & Vanessa Fonseca

Faculty of Sciences of the University of Lisbon

MARE – Marine and Environmental Sciences Centre

unite!

University Network for Innovation,
Technology and Engineering

U
LISBOA

UNIVERSIDADE
DE LISBOA

Co-funded by the
Erasmus+ Programme
of the European Union

TESTS

Trial preparation, setups and typologies

unite!

University Network for Innovation,
Technology and Engineering

UNIVERSIDADE
DE LISBOA

Co-funded by the
Erasmus+ Programme
of the European Union

ECOLOGY

Ecology is a branch of biology concerning **interactions among organisms and their biophysical environment**, which includes both biotic and abiotic components.

ECOTOXICOLOGY

The study of the effects of toxic chemicals on biological organisms, especially at the population, community, ecosystem, and biosphere levels. Ecotoxicology is a multidisciplinary field, which integrates toxicology and ecology.

TOXICOLOGY

Toxicology is a scientific discipline, overlapping with biology, chemistry, pharmacology, and medicine, that involves **the study of the adverse effects of chemical substances on living organisms** and the practice of diagnosing and treating exposures to toxins and toxicants.

In Ecotoxicology the concentration of the test substance in the target organisms should reflect the environmentally relevant or expected concentrations.

unite!

University Network for Innovation,
Technology and Engineering

U LISBOA

UNIVERSIDADE
DE LISBOA

Co-funded by the
Erasmus+ Programme
of the European Union

Typologies

- **Acute:** 1-4 days (at least 10% of the organism life cycle)
- **Subacute:** standard 28 days test
- **Subchronic:** standardized to 90 days
- **Chronic:** more than 90 days (should allow a complete life cycle)
- **Transgenerational:** Allows production of a new generation and evaluates the effects on the offspring.

Typology

The exposure typology should reflect the environmental exposure time typically observed or to answer to the target scientific question (for e.g. what is the effect at the reproduction level).

ORGANIMS

- Bacteria
- Micro- and macro- algae
- Plants
- Invertebrates
- Fishes
- Mammals

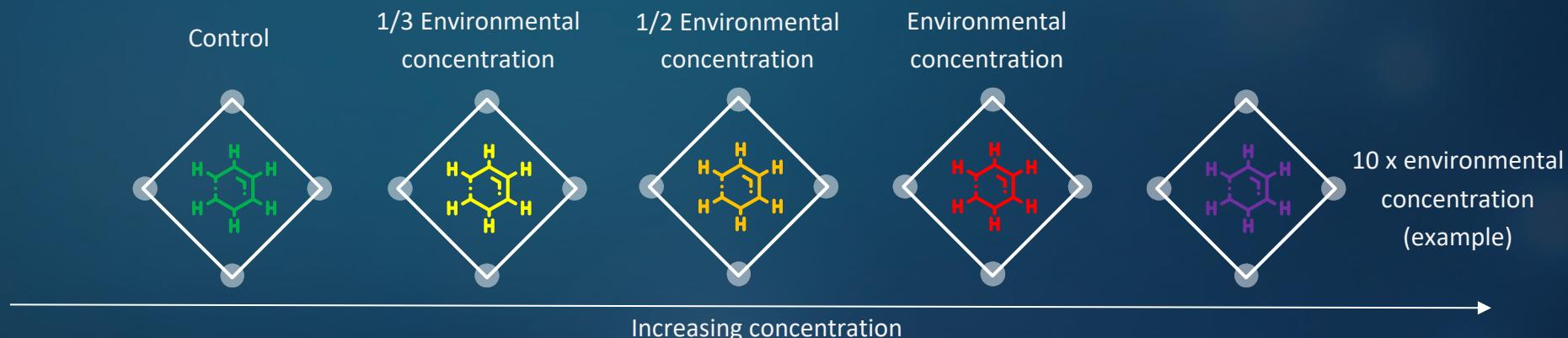
ORGANISM

The selected organism should be cosmopolitan and representative of a certain group/environment.

unite!

University Network for Innovation,
Technology and Engineering

UNIVERSIDADE
DE LISBOA


Co-funded by the
Erasmus+ Programme
of the European Union

INDIVIDUALS

- Clonal or with the same genetic background (lab cultured/maintained organisms);
- Similar age or life cycle stage;
- Similar sex (or grouped by sex if sex is a variable to analyse);
- Similar morphometric characteristics (height, weight, volume);
- Similar life history (maintained or reproduced under the same abiotic conditions);

DESIGN

- Control and test groups exposed simultaneously and under the same environmental conditions (light, temperature, etc);
- A consistent number of replicates must be ensure in all exposure mesocosmos;
- Increasing concentrations should follow a mathematical and logic succession or increase rate;

unite!

University Network for Innovation,
Technology and Engineering

U LISBOA

UNIVERSIDADE
DE LISBOACo-funded by the
Erasmus+ Programme
of the European Union

ECOTOXICITY TESTS

unite!

University Network for Innovation,
Technology and Engineering

U LISBOA

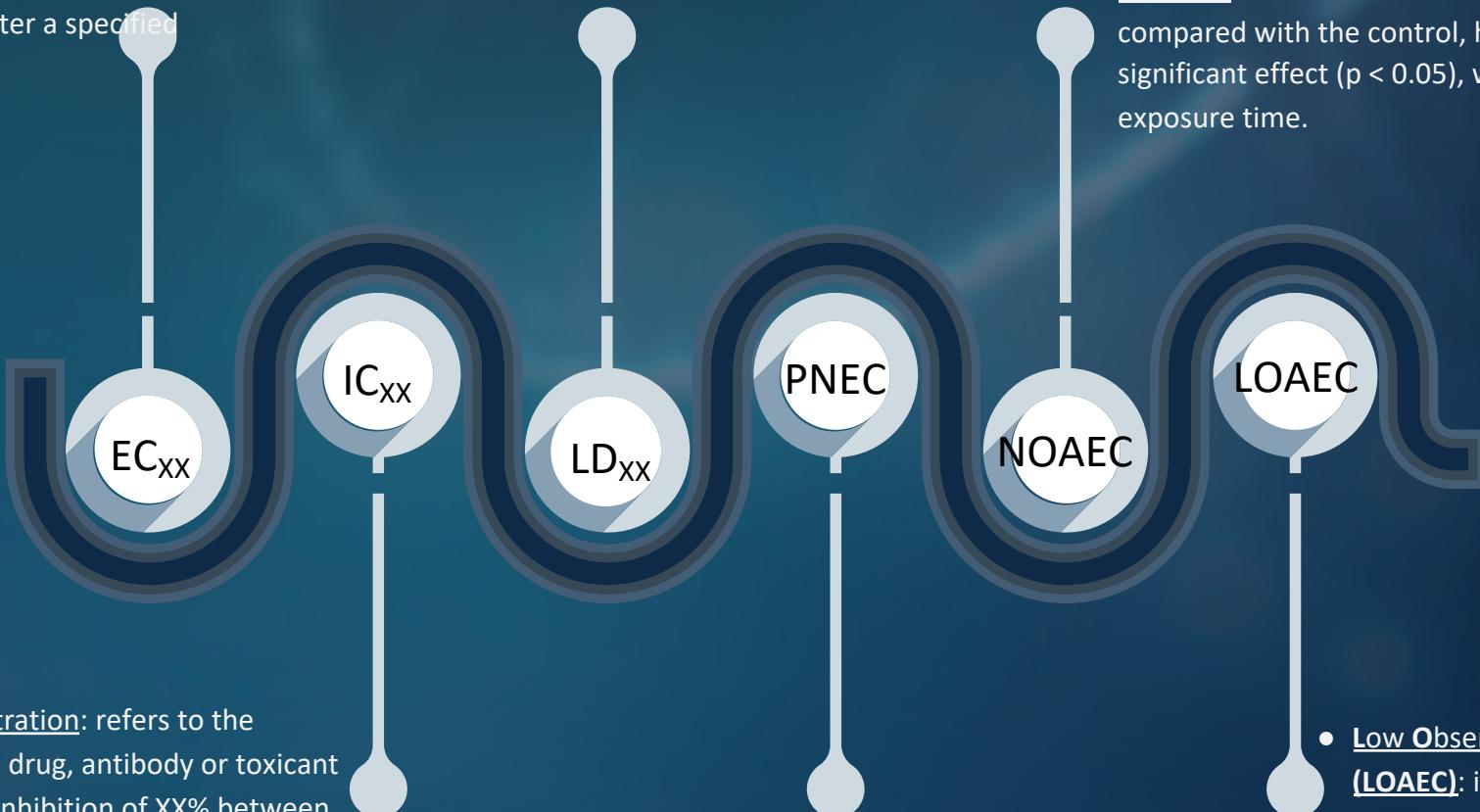
UNIVERSIDADE
DE LISBOACo-funded by the
Erasmus+ Programme
of the European Union

PARAMETERIZATION

Ecotoxicity parameters,
calculations and significance

unite!

University Network for Innovation,
Technology and Engineering


UNIVERSIDADE
DE LISBOA

Co-funded by the
Erasmus+ Programme
of the European Union

- **Effective Concentration:** refers to the concentration of a drug, antibody or toxicant which induces a response of XX% between the baseline and maximum after a specified exposure time.

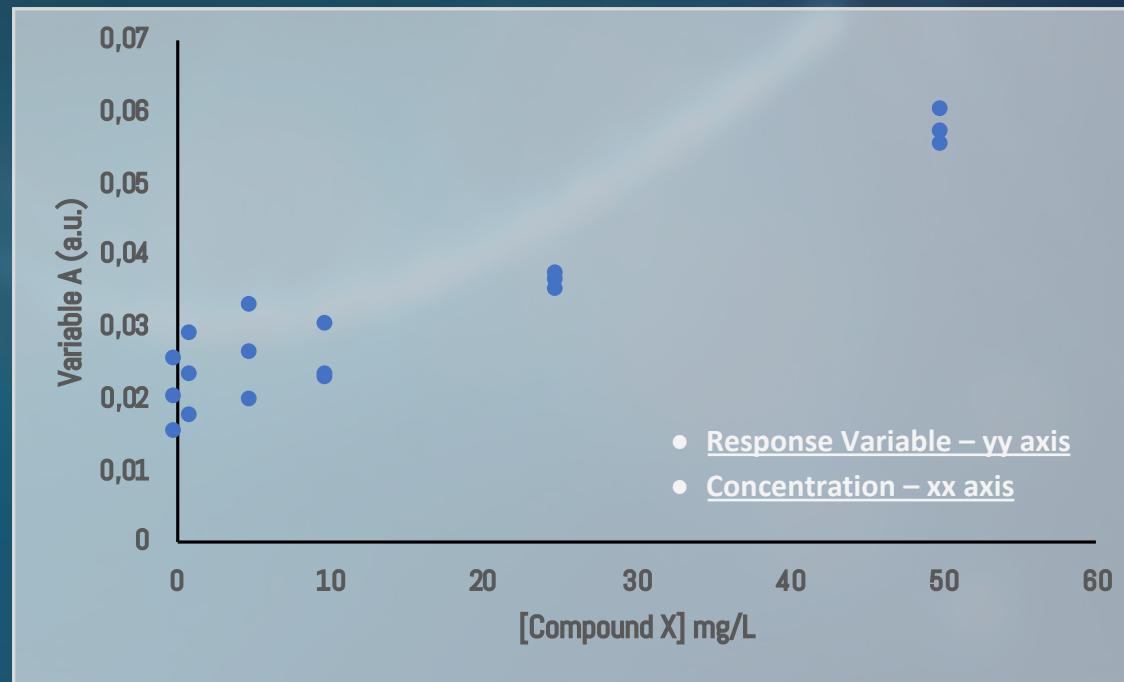
ECOTOXICITY TESTS

- **Lethal Concentration:** of a toxin, radiation, or pathogen is the dose required to kill XX% of the members of a tested population after a specified test duration.

- **No Observed Adverse Effect Concentration (NOAEC):** is the tested concentration which, when compared with the control, has no statistically significant effect ($p < 0.05$), within a given exposure time.

- **Predicted No Effect Concentration (PNEC):** the concentration of a chemical which marks the limit at which below no adverse effects of exposure in an ecosystem are measured.

Co-funded by the
Erasmus+ Programme
of the European Union


unite!

University Network for Innovation,
Technology and Engineering

U LISBOA

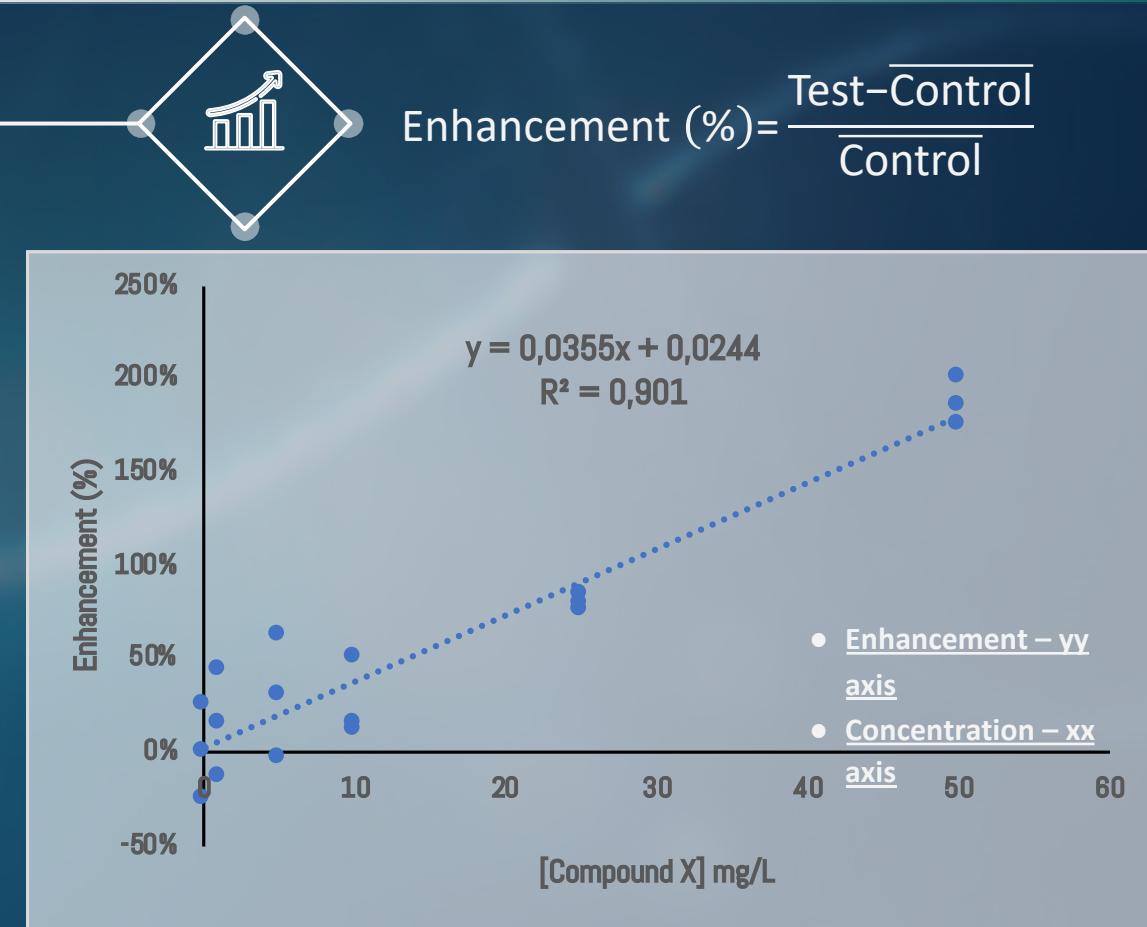
UNIVERSIDADE
DE LISBOA

[Compound X] mg/L	Variable A (a.u.)
0	0,02
0	0,015
0	0,025
1	0,023
1	0,01725
1	0,02875
5	0,026
5	0,0195
5	0,0325
10	0,03
10	0,0225
10	0,023
25	0,035
25	0,037
25	0,036
50	0,06
50	0,057
50	0,055

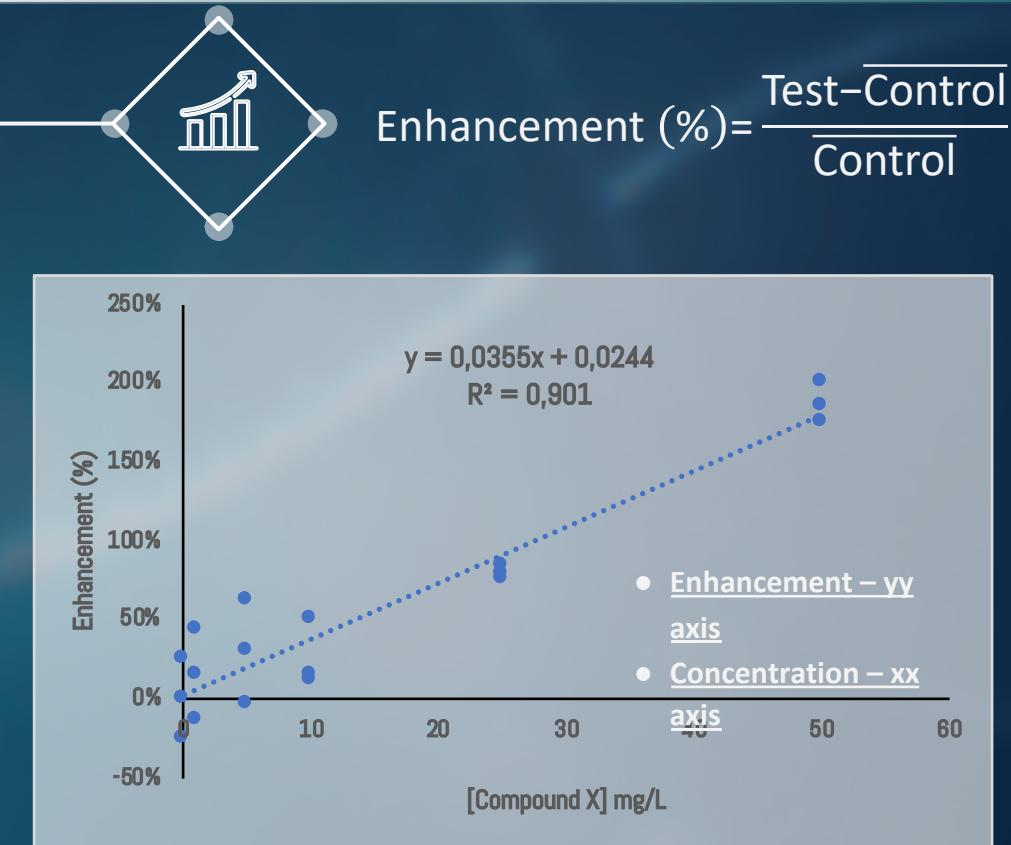
Plotting the response of a certain biomarker against the exposure dose to which the organism was exposed allows to evaluate the tendency of the effect of the compound towards the target biomarker.

unite!

University Network for Innovation,
Technology and Engineering



UNIVERSIDADE
DE LISBOA


Co-funded by the
Erasmus+ Programme
of the European Union

[Compound X] mg/L	Variable A (a.u.)	Enhancement (%)
0	0,02	0%
0	0,015	-25%
0	0,025	25%
1	0,023	15%
1	0,01725	-14%
1	0,02875	44%
5	0,026	30%
5	0,0195	-3%
5	0,0325	63%
10	0,03	50%
10	0,0225	13%
10	0,023	15%
25	0,035	75%
25	0,037	85%
25	0,036	80%
50	0,06	200%
50	0,057	185%
50	0,055	175%

A Relative Enhancement can be calculated with the above formula and a linear correlation can be plotted.

[Compound X] mg/L	Variable A (a.u.)	Enhancement (%)
0	0,02	0%
0	0,015	-25%
0	0,025	25%
1	0,023	15%
1	0,01725	-14%
1	0,02875	44%
5	0,026	30%
5	0,0195	-3%
5	0,0325	63%
10	0,03	50%
10	0,0225	13%
10	0,023	15%
25	0,035	75%
25	0,037	85%
25	0,036	80%
50	0,06	200%
50	0,057	185%
50	0,055	175%

Using the linear regression equation calculate the concentration at which the enhancement is 50% (EC_{50})

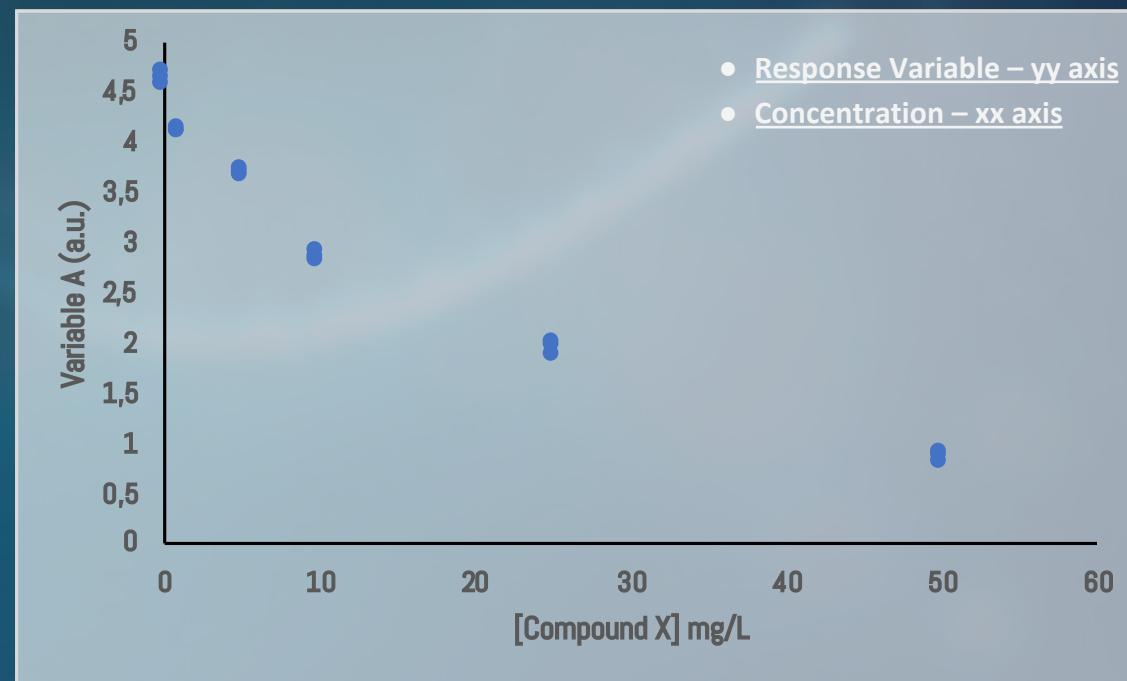
$$50\% = 0.0355x + 0.0244 \Leftrightarrow 0.5 = 0.0355x + 0.0244 \Leftrightarrow 0.5 - 0.0244 = 0.0355x$$

$$x = 13.40 \text{ mg/L} = EC_{50}$$

Upon the application of 13.40 mg/L the variable A suffers a 50% increase in relation to the control.

unite!

University Network for Innovation,
Technology and Engineering

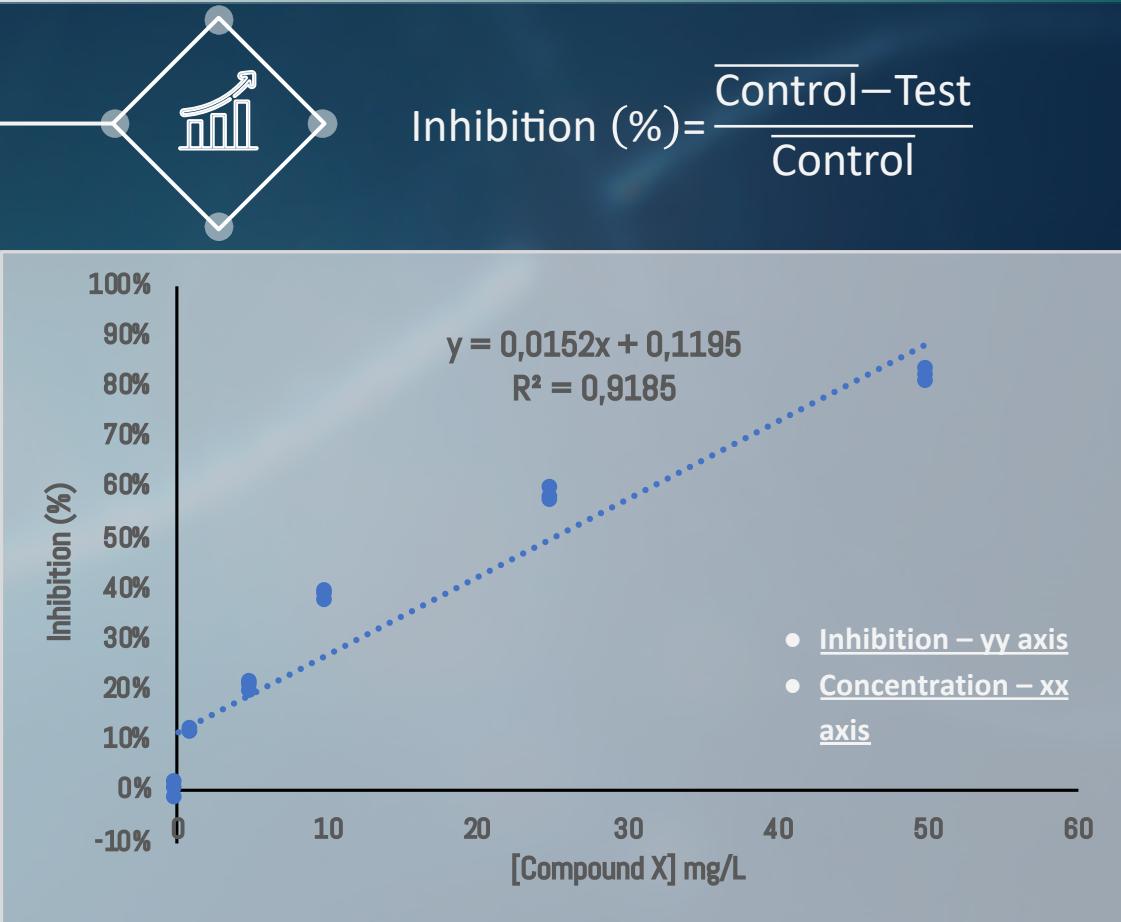

 LISBOA

UNIVERSIDADE
DE LISBOA

Co-funded by the
Erasmus+ Programme
of the European Union

[Compound X] mg/L	Variable A (a.u.)
0	4,69
0	4,57
0	4,63
1	4,08
1	4,11
1	4,095
5	3,72
5	3,65
5	3,685
10	2,89
10	2,81
10	2,85
25	1,99
25	1,87
25	1,95
50	0,9
50	0,79
50	0,845

Plotting the response of a certain biomarker against the exposure dose to which the organism was exposed allows to evaluate the tendency of the effect of the compound towards the target biomarker. In this case an inhibition.


unite!

 University Network for Innovation,
Technology and Engineering

 UNIVERSIDADE
DE LISBOA

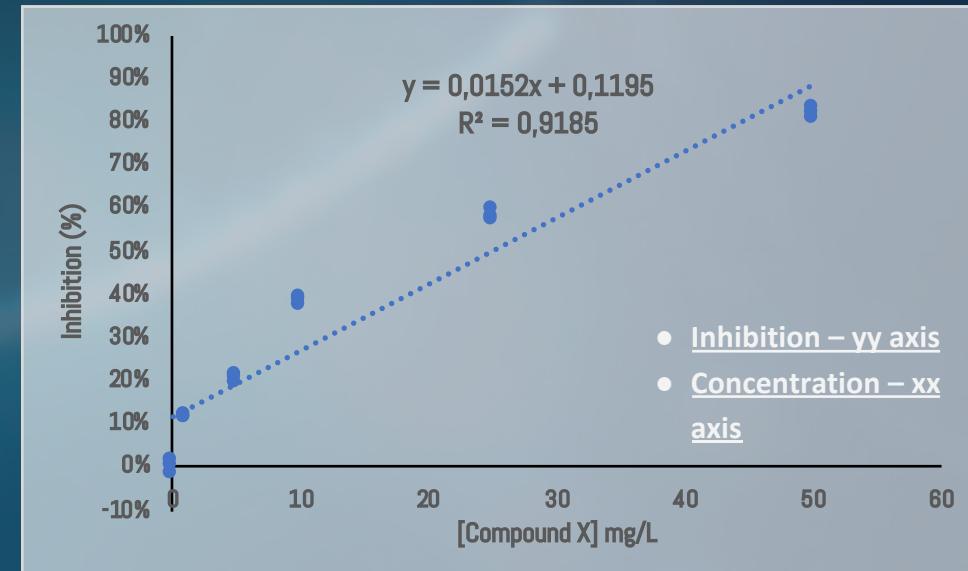
 Co-funded by the
Erasmus+ Programme
of the European Union

[Compound X] mg/L	Variable A (a.u.)	Inhibition (%)
0	4,69	-1%
0	4,57	1%
0	4,63	0%
1	4,08	12%
1	4,11	11%
1	4,095	12%
5	3,72	20%
5	3,65	21%
5	3,685	20%
10	2,89	38%
10	2,81	39%
10	2,85	38%
25	1,99	57%
25	1,87	60%
25	1,95	58%
50	0,9	81%
50	0,79	83%
50	0,845	82%

A Relative Inhibition can be calculated with the above formula and a linear correlation can be plotted.

unite!

 University Network for Innovation,
 Technology and Engineering


 UNIVERSIDADE
 DE LISBOA

 Co-funded by the
 Erasmus+ Programme
 of the European Union

[Compound X] mg/L	Variable A (a.u.)	Inhibition (%)
0	0,02	0%
0	0,015	-25%
0	0,025	25%
1	0,023	15%
1	0,01725	-14%
1	0,02875	44%
5	0,026	30%
5	0,0195	-3%
5	0,0325	63%
10	0,03	50%
10	0,0225	13%
10	0,023	15%
25	0,035	75%
25	0,037	85%
25	0,036	80%
50	0,06	200%
50	0,057	185%
50	0,055	175%

$$\text{Inhibition (\%)} = \frac{\text{Control} - \text{Test}}{\text{Control}}$$

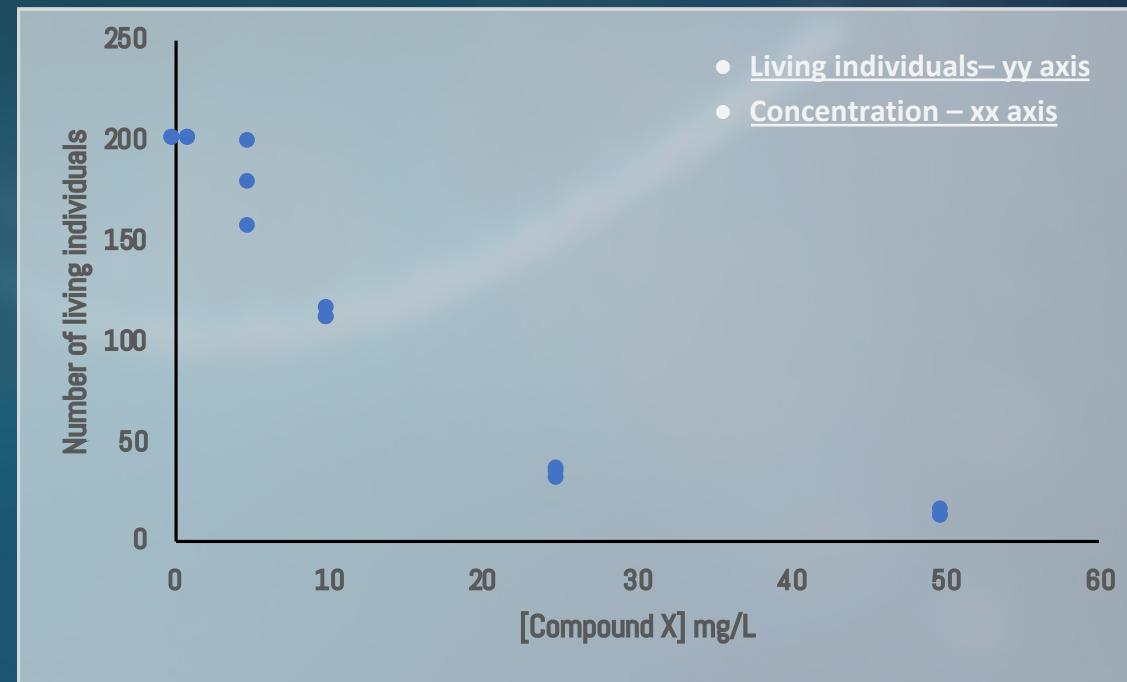
Using the linear regression equation calculate the concentration at which the inhibition was 50% (IC_{50})

$$50\% = 0,0152x + 0,1195 \Leftrightarrow 0,5 = 0,0152x + 0,1195 \Leftrightarrow 0,5 - 0,1195 = 0,0152x$$

$$x = 13,40 \text{ mg/L} = IC_{50}$$

Upon the application of 13,40 mg/L the variable A suffers a 50% inhibition relative to the control.

unite!

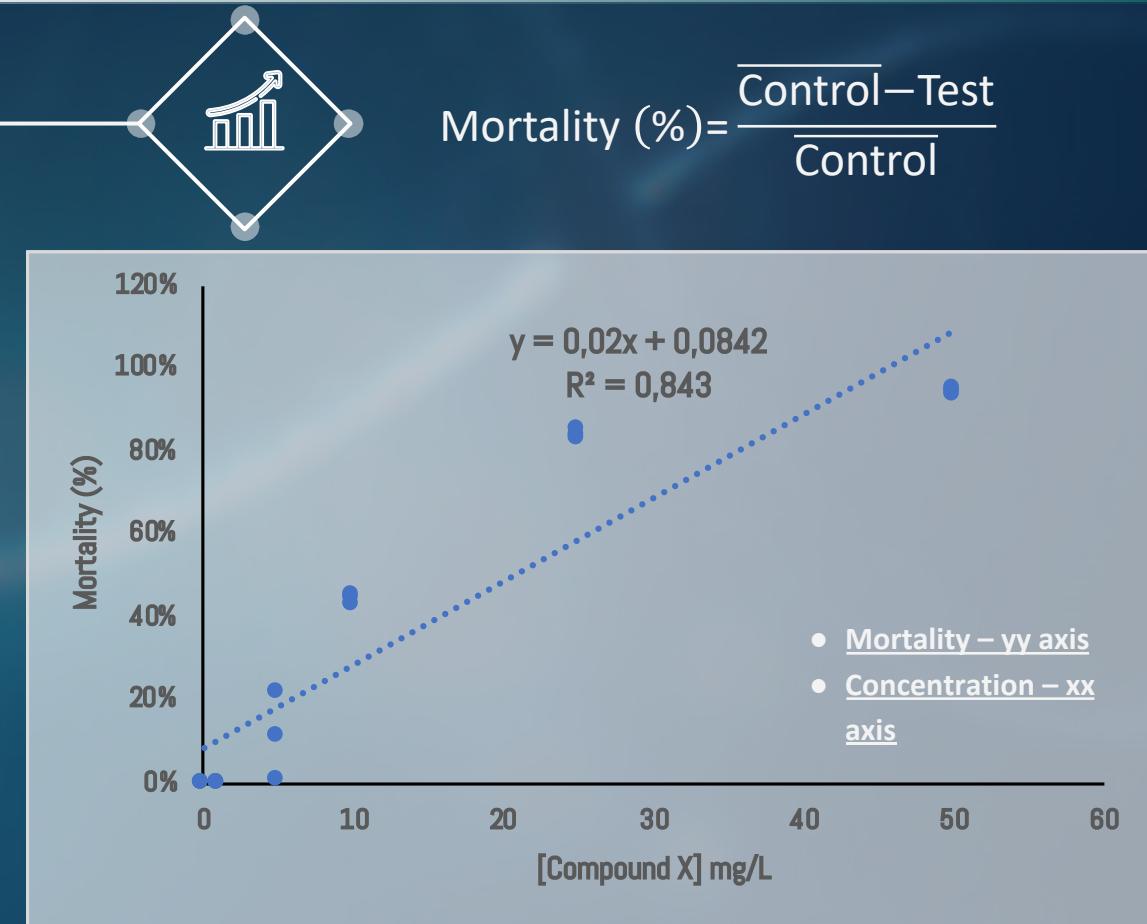

 University Network for Innovation,
 Technology and Engineering

 UNIVERSIDADE
 DE LISBOA

 Co-funded by the
 Erasmus+ Programme
 of the European Union

[Compound X] mg/L	Number of living individuals
0	200
0	200
0	200
1	200
1	200
1	200
5	156
5	178
5	198
10	110
10	115
10	111
25	30
25	33
25	35
50	11
50	12
50	14

Plotting the response of the number of living organisms against the exposure dose to which the organism was exposed allows to evaluate the mortality tendency of the compound in the test organism.


unite!

 University Network for Innovation,
Technology and Engineering

 UNIVERSIDADE
DE LISBOA

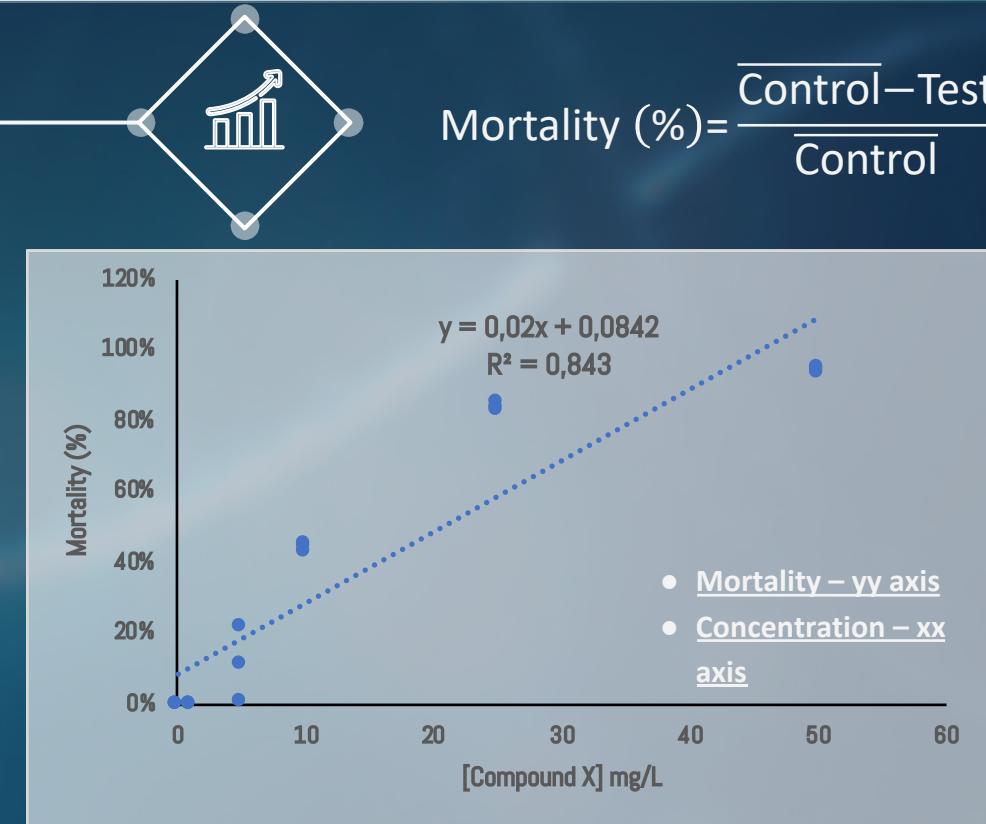
 Co-funded by the
Erasmus+ Programme
of the European Union

[Compound X] mg/L	Variable A (a.u.)	Mortality (%)
0	4,69	0%
0	4,57	0%
0	4,63	0%
1	4,08	0%
1	4,11	0%
1	4,095	0%
5	3,72	22%
5	3,65	11%
5	3,685	1%
10	2,89	45%
10	2,81	43%
10	2,85	45%
25	1,99	85%
25	1,87	84%
25	1,95	83%
50	0,9	95%
50	0,79	94%
50	0,845	93%

A Mortality percentage can be calculated with the above formula and a linear correlation can be plotted.

unite!

University Network for Innovation,
Technology and Engineering


U LISBOA

UNIVERSIDADE
DE LISBOA

Co-funded by the
Erasmus+ Programme
of the European Union

[Compound X] mg/L	Variable A (a.u.)	Mortality (%)
0	0,02	0%
0	0,015	-25%
0	0,025	25%
1	0,023	15%
1	0,01725	-14%
1	0,02875	44%
5	0,026	30%
5	0,0195	-3%
5	0,0325	63%
10	0,03	50%
10	0,0225	13%
10	0,023	15%
25	0,035	75%
25	0,037	85%
25	0,036	80%
50	0,06	200%
50	0,057	185%
50	0,055	175%

Using the linear regression equation calculate the concentration at which half the number of initial individuals is dead (LC_{50})

$$50\% = 0.02x + 0.0842 \Leftrightarrow 0.5 = 0.02x + 0.0842 \Leftrightarrow 0.5 - 0.0842 = 0.02x$$

$$x = 15.79 \text{ mg/L} = LC_{50}$$

Upon the application of 15.79 mg/L 50% of the individual die.

unite!

University Network for Innovation,
Technology and Engineering

U LISBOA

UNIVERSIDADE
DE LISBOA

Co-funded by the
Erasmus+ Programme
of the European Union

ECOTOXICITY VARIABLES

EC
IC
LC

- EC, IC and LC refer to effective, inhibitory and lethal **concentration** respectively.
- It refers to an **external or exogenous concentration** applied to a certain organism.
- Expressed as a **mass per volume unit**.

ED
ID
LD

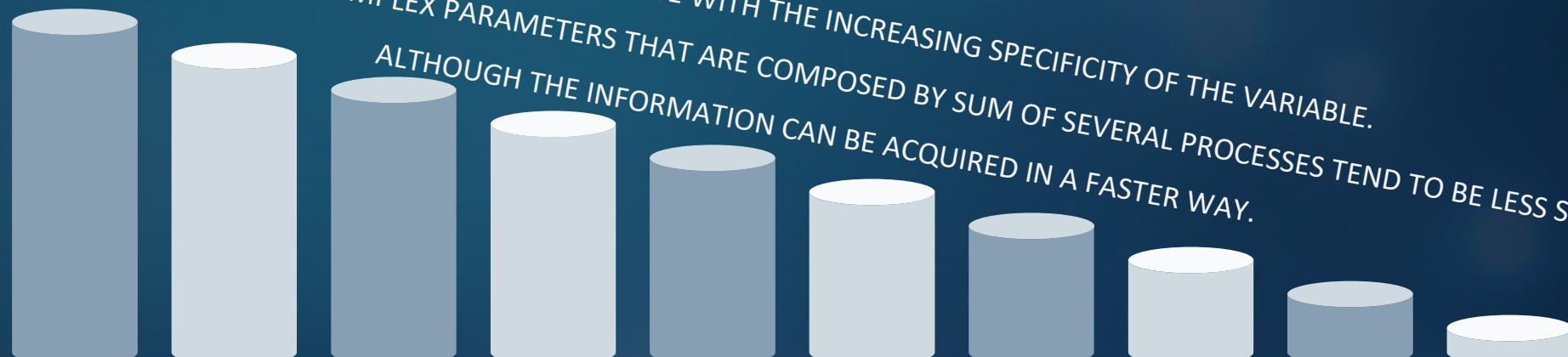
- ED, ID and LD refer to effective, inhibitory and lethal **dose** respectively.
- It refers to measured concentration **inside an organism or to an external or exogenous concentration applied to a certain organism calculated proportionally to the organism body mass**
- Expressed as **mass of target substance**

BEHAVIOURAL

- Locomotion capacity
- Feeding rates
- Attack rates

MORPHOLOGICAL

- Growth rates
- Cell size
- Tissue anomalies
- Morphometric and geometry changes


METABOLIC

- Photosynthetic activity
- Respiratory activity
- Sugar/Lipid consumption

MOLECULAR

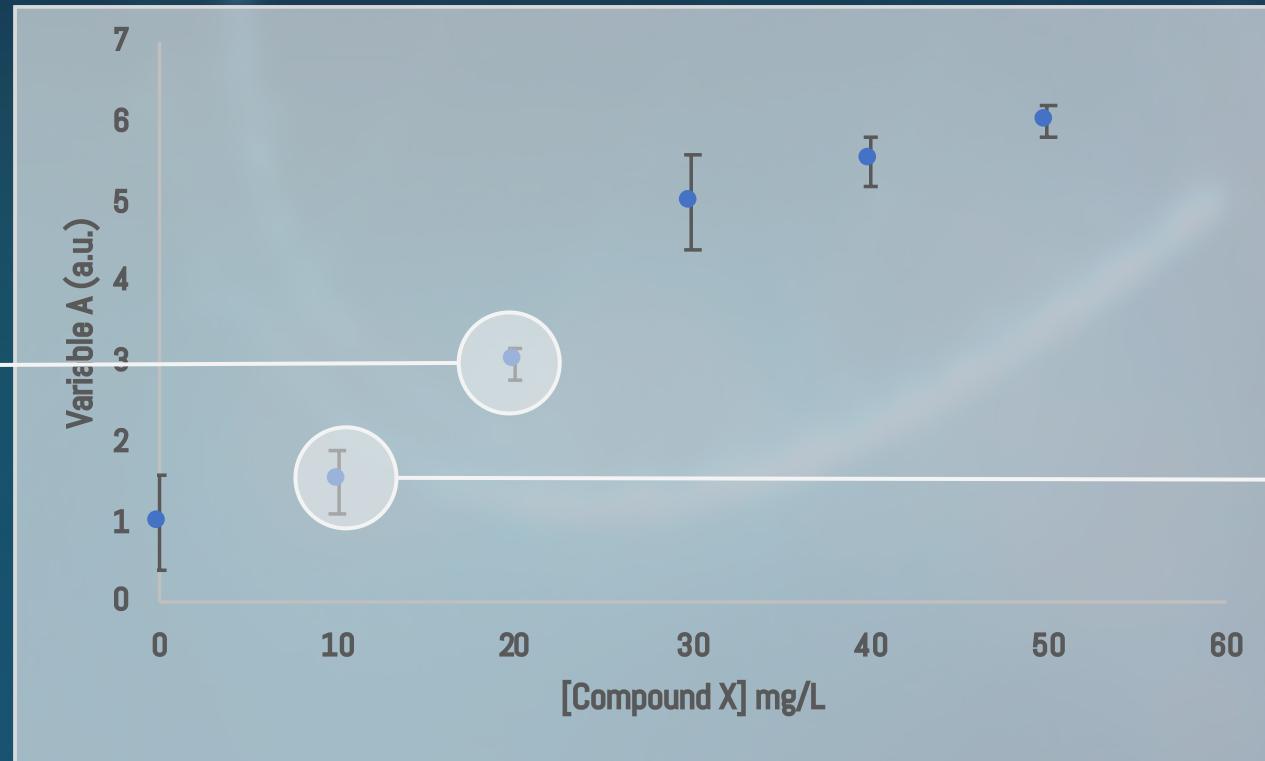
- Enzymatic activity
- Membrane peroxidation
- Protein oxidation
- DNA damage
- Gene expression
- Metabolite production/consumption

VARIABLES THAT REFER TO COMPLEX PARAMETERS THAT ARE COMPOSED BY SUM OF SEVERAL PROCESSES TEND TO BE LESS SENSITIVE, EC AND IC TEND TO DECREASE WITH THE INCREASING SPECIFICITY OF THE VARIABLE. ALTHOUGH THE INFORMATION CAN BE ACQUIRED IN A FASTER WAY.

unite!

University Network for Innovation,
Technology and Engineering

U LISBOA


UNIVERSIDADE
DE LISBOACo-funded by the
Erasmus+ Programme
of the European Union

LOAEC

The lowest observed (tested) concentration that produced significant effects

NOAEC

Highest concentration at which no significant effects are still detected.

NOAEC/LOAEC versus IC/EC/LC

- NOAEC and LOAEC depend on the concentrations tested and defined by the user; if the range of concentrations tested has a low resolution power the NOAEC and LOAEC assessed can be deceiving.
- IC, EC and LC are obtained by linear regression analysis and thus even if the concentration correspondent to each of these parameters was not tested, it can be calculated.

PREDICTED NO EFFECT CONCENTRATION (PNEC):

- The concentration of a chemical which marks the limit at which below no adverse effects of exposure in an ecosystem are measured.
- Conservative values and predict the concentration at which a chemical will likely have no toxic effect.
- Do not intended to predict the upper limit of concentration of a chemical that has a toxic effect
- PNEC values are often used in environmental risk assessment as a tool in ecotoxicology.
- A PNEC for a chemical can be calculated with acute toxicity or chronic toxicity single-species data, species sensitivity distribution (SSD) multi-species data, field data or model ecosystems data. depending of the type of data used, an **ASSESSMENT FACTOR** is used to account for the confidence of the toxicity data being extrapolated to an entire ecosystem.

Available test result	Assessment factor
One long-term test (NOEC or EC10)	100
Two long-term tests (NOEC or EC10) with species representing different living and feeding conditions	50
Three long-term tests (NOEC or EC10) with species representing different living and feeding conditions	10

unite!

University Network for Innovation,
Technology and EngineeringUNIVERSIDADE
DE LISBOACo-funded by the
Erasmus+ Programme
of the European Union

PREDICTED NO EFFECT CONCENTRATION (PNEC):

- The concentration of a chemical which marks the limit at which below no adverse effects of exposure in an ecosystem are measured.
- Conservative values and predict the concentration at which a chemical will likely have no toxic effect.
- Do not intended to predict the upper limit of concentration of a chemical that has a toxic effect
- PNEC values are often used in environmental risk assessment as a tool in ecotoxicology.
- A PNEC for a chemical can be calculated with acute toxicity or chronic toxicity single-species data, species sensitivity distribution (SSD) multi-species data, field data or model ecosystems data. depending of the type of data used, an **ASSESSMENT FACTOR** is used to account for the confidence of the toxicity data being extrapolated to an entire ecosystem.
- The ASSESSMENT FACTOR can be determined by the available bibliography or pre-defined taking into account the type of assay.

Available test result	Assessment factor
One long-term test (NOEC or EC10)	100
Two long-term tests (NOEC or EC10) with species representing different living and feeding conditions	50
Three long-term tests (NOEC or EC10) with species representing different living and feeding conditions	10
Available test result	Assessment factor
Acute Toxicity Data	The lowest LC50 in the compiled database is then divided by the assessment factor to calculate the PNEC for that data. The assessment factor applied to acute toxicity data is typically 1000.
Chronic Toxicity Data	The lowest NOEC value in the test dataset is divided by an assessment factor between 10 and 100 dependent on the diversity of test organisms and the amount of data available. If there are more species or data, the assessment factor is lower.

Duarte, I.A., Reis-Santos, P., Novais, S.C., Rato, L.D., Lemos, M.F.L., Freitas, A., Pouca, A.S.V., Barbosa, J., Cabral, H.N., Fonseca, V.F., 2020. Depressed, hypertense and sore: Long-term effects of fluoxetine, propranolol and diclofenac exposure in a top predator fish. *Science of the Total Environment* 712. (DOI: 10.1016/j.scitotenv.2020.136564).

Duarte, I.A., Pais, M.P., Reis-Santos, P., Cabral, H.N., Fonseca, V.F., 2019. Biomarker and behavioural responses of an estuarine fish following acute exposure to fluoxetine. *Marine Environmental Research* 147, 24–31. (DOI: 10.1016/j.marenvres.2019.04.002).

Duarte, I.A., Reis-Santos, P., França, S., Cabral, H., Fonseca, V.F., 2017. Biomarker responses to environmental contamination in estuaries: A comparative multi-taxa approach. *Aquatic Toxicology* 189, 31–41. (DOI: 10.1016/j.aquatox.2017.05.010).

Fonseca, V.F., França, S., Serafim, A., Company, R., Lopes, B., Bebianno, M.J., Cabral, H.N., 2011. Multi-biomarker responses to estuarine habitat contamination in three fish species: *Dicentrarchus labrax*, *Solea senegalensis* and *Pomatoschistus microps*. *Aquatic Toxicology* 102, 216–227. (DOI: 10.1016/j.aquatox.2011.01.018).

unite!

University Network for Innovation,
Technology and Engineering LISBOAUNIVERSIDADE
DE LISBOACo-funded by the
Erasmus+ Programme
of the European Union

Franzitta, M., Feijão, E., Cabrita, M.T., Gameiro, C., Matos, A.R., Marques, J.C., Goessling, J.W., Reis-Santos, P., Fonseca, V.F., Pretti, C., Caçador, I. And Duarte, B., 2020. Toxicity going nano: ionic versus engineered cu nanoparticles (ENPs) impacts on the physiological fitness of the model diatom *Phaeodactylum tricornutum*. *Frontiers in Marine Science* 7, 539827 (doi: 10.3389/fmars.2020.539827).

Carvalho, R.C., Feijão E., Matos, A.R., Cabrita, M.T., Novais, S.C., Lemos, M.F.L., Caçador, I., Marques, J.C., Reis-Santos, P., Fonseca, V.F. and Duarte, B., 2020. Glyphosate-based herbicide toxicophenomics in marine diatoms: impacts on primary production and physiological fitness. *Applied Sciences* 10, 7391 (DOI: 10.3390/app10217391).

Feijão, E., Carvalho, R.C., Duarte, I.A., Matos, A.R., Cabrita, M.T., Novais, S.C., Lemos, M.F.L., Caçador, I., Marques, J.C., Reis-Santos, P., Fonseca, V.F. and Duarte, B., 2020. Fluoxetine Arrests Growth of the Model Diatom *Phaeodactylum tricornutum* by Increasing Oxidative Stress and Altering Energetic and Lipid Metabolism. *Frontiers in Microbiology* 11, 1803 (DOI: 10.3389/fmicb.2020.01803).

Duarte, B., Santos, D. and Caçador, I., 2013. Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker. *Functional Plant Biology* 40, 922-930. (DOI: 10.1071/FP12315).

unite!

University Network for Innovation,
Technology and Engineering LISBOAUNIVERSIDADE
DE LISBOACo-funded by the
Erasmus+ Programme
of the European Union

The background of the image is an underwater scene. At the surface, there is a large green sea turtle swimming towards the left. Below the surface, a school of small, silvery fish swims in various directions. In the upper left corner, a large piece of translucent plastic debris, possibly a plastic bag, hangs in the water. The water is a deep, clear blue, and the overall atmosphere is somber, highlighting the issue of plastic pollution in the ocean.

ulisses

 UNITE!
University Network for
Innovation, Technology
and Engineering

 ULISBOA | UNIVERSIDADE
DE LISBOA