

Journal Pre-proof

The extraction of microplastics from sediments: An OVERVIEW of existing methods and the PROPOSAL of a NEW and green alternative

A. Bellasi, G. Binda, A. Pozzi, G. Boldrocchi, R. Bettinetti

PII: S0045-6535(21)00827-4

DOI: <https://doi.org/10.1016/j.chemosphere.2021.130357>

Reference: CHEM 130357

To appear in: *ECSN*

Received Date: 22 December 2020

Revised Date: 16 March 2021

Accepted Date: 20 March 2021

Please cite this article as: Bellasi, A., Binda, G., Pozzi, A., Boldrocchi, G., Bettinetti, R., The extraction of microplastics from sediments: An OVERVIEW of existing methods and the PROPOSAL of a NEW and green alternative, *Chemosphere*, <https://doi.org/10.1016/j.chemosphere.2021.130357>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Ltd. All rights reserved.

1 **Highlights**

2 • Microplastics (MPs) contamination is an environmental issue

3 • Plastic particles have been observed almost worldwide in every natural environments

4 • A proper quantification of dispersed particles in sediments is still difficult

5 • Different extraction methods of MPs from sediments are described

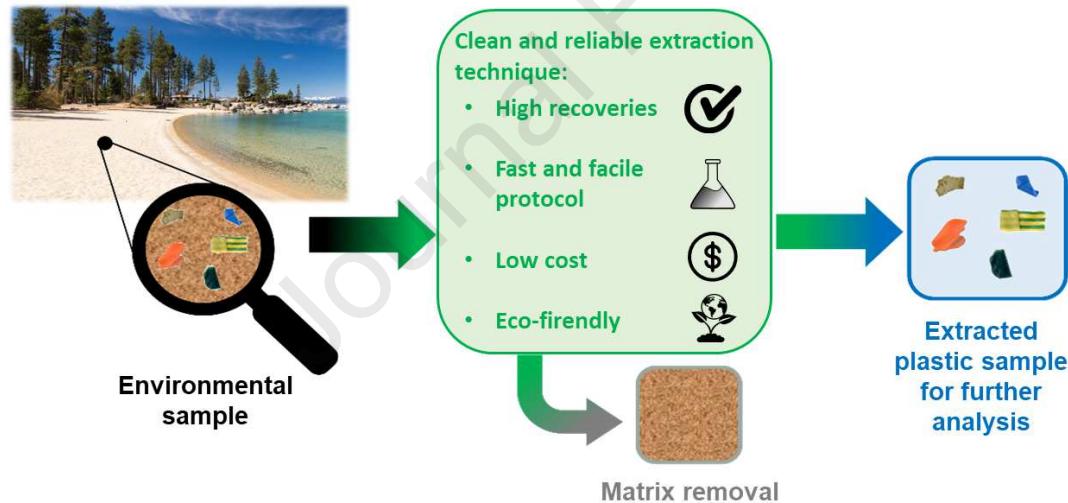
6 • A valid alternative in term of reliability and costs for the extraction is proposed

1 **THE EXTRACTION OF MICROPLASTICS FROM SEDIMENTS: AN OVERVIEW OF**
 2 **EXISTING METHODS AND THE PROPOSAL OF A NEW AND GREEN ALTERNATIVE**

3 **Bellasi A.¹, Binda G.¹, Pozzi A.¹, Boldrocchi G.², Bettinetti R.² *,**

4 ¹ Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100

5 Como, Italy; abellasi@uninsubria.it (A.B.); g.binda2@uninsubria.it (G.B.);


6 andrea.pozzi@uninsubria.it (A.P.); gboldrocchi@uninsubria.it (G.B.)

7 ² Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio

8 11, 22100 Como, Italy

9 * Correspondence: roberta.bettinetti@uninsubria.it

10 **Graphical abstract**

11

12 **Abstract:** Microplastics (MPs) contamination is an existing and concerning environmental issue.

13 Plastic particles have been observed worldwide in every natural matrix, with water environments

14 being the final sink of dispersed MPs. Microplastic distribution in water ecosystems varies as a

15 function of multiple factors, including polymer properties (e.g., density and wettability) and

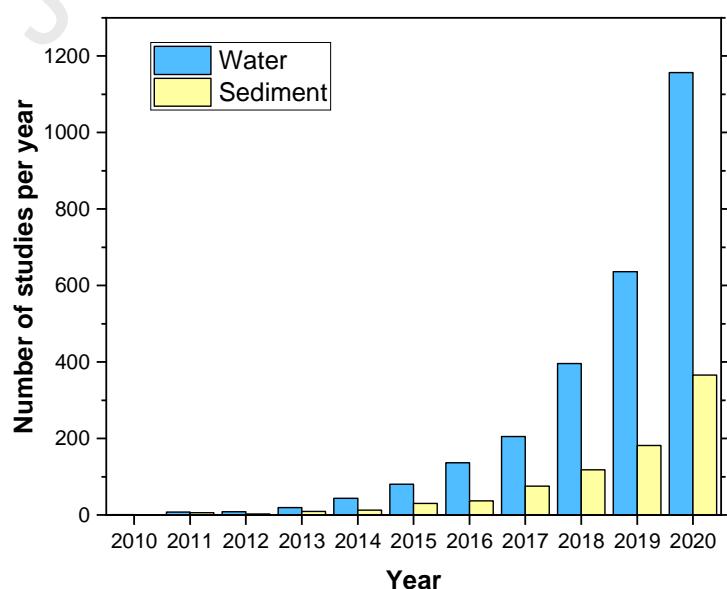
16 environmental conditions (e.g., water currents and temperature). Because of the tendency of MPs

17 to settle, sediment is known to be one of the most impacted environmental matrices. Despite the

18 increasing awareness of their diffusion in sediments, a proper quantification of dispersed particles
19 is still difficult, due to the lack of standard protocols, which avoid a proper comparison of different
20 sites. This hampers the current knowledge on environmental implications and toxicological effects
21 of MPs in sediments. In this work, we examined 49 studies carried out from 2004 to 2020 to
22 describe the different extraction methods applied, and to highlight pros and cons, with the aim of
23 evaluating the more promising protocols. Therefore, we evaluated each proposed method by
24 considering precision, reproducibility, economic viability and greenness (in term of used reagents).
25 Finally, we proposed a valid alternative procedure in term of reliability and costs, which can attract
26 increasing interest for future studies.

27 **Keywords:** microplastic, sediment, extraction method, standard protocol, density separation,
28 oleophilic

29 1. Introduction


30 Microplastics (MPs, i.e. plastic particles with size <5mm) pollution in natural habitats has been
31 considered a potential concern since 1980s [1], however only recently it has been recognized as a
32 global threat due to its diffusion at a worldwide level [2]. Indeed, all the environmental
33 compartments are reported to be affected by plastic pollution [3–6] and water environments are
34 known to be the most struck [7].

35 MPs have been recognized as an “emerging contaminant” [8,9] due to their persistence,
36 ubiquity and risks posed to aquatic and soil organisms [10–19]. Besides direct negative effects
37 derived from the ingestion of particles [20–22], MPs can act as both sources of toxic chemicals by
38 releasing plasticizers and additives [23–25], which can lead to a disruption of biological processes
39 (eg, endocrine disruption [26,27]), and as sinks for hydrophobic contaminants [28,29]. Moreover,
40 recent findings showed that MPs can also interact with trace metals in environmental conditions,
41 acting as a vector for toxic element uptake by aquatic and terrestrial organisms [13,30–32].

42 More recently, the degradation of MPs and the further formation of nanoplastics, defined as
 43 particle smaller than $<1 \mu\text{m}$ [33], have attracted considerable interests at global scale for their
 44 environmental implications. However, the technical difficulties in investigating particles of this size
 45 in the environmental media have hindered to obtain reliable comprehension of their
 46 ecotoxicological effects [34].

47 Whereas studies concerning the presence of MPs in waters date back to 1970s [35], only in late
 48 1990s, scientists have started to monitor both sediment and beach litter [36–38]. The number of
 49 records available in Scopus database (<https://www.scopus.com/home.uri>) regarding studies that
 50 explore the presence of MPs in sediments are much less abundant than those of MPs in water
 51 (Figure 1). Moreover, research on MPs in sediments became relevant after 2010, and only from
 52 2016 they have started to increase exponentially.

53 While the presence of MPs in sediments is reported worldwide [10,40,41], the lack of a
 54 standardized method of analysis hampers the complete assessment of MPs pollution in sediments
 55 [39], and therefore, still now, it is difficult to evaluate the ecotoxicological implications of MPs in
 56 this compartment [40].

58 **Figure 1:** a comparison of studies concerning the presence of MPs in sediments (in
59 yellow) and water compartment (in blue) from the last ten years. Data were obtained by
60 searching “microplastics + sediments” and “microplastics + water” on Scopus database.

61 The fate of MPs in aquatic ecosystems, including sediments, depends on several variables
62 related to both the water body (e.g., wind, currents, and geographical location [40]) and the plastic
63 properties (e.g., the polymer density and the grade of ageing [42,43]). Therefore, while floating
64 plastic litter might be easily deposited on beaches, causing severe pollution of this compartment,
65 plastic particles sink along the water column reaching the sediment. Furthermore, due to the
66 dynamics of MP sedimentation [44], those particles loaded with pollutants or incorporated in
67 organic matter are more likely to sink and accumulate in sediments [45,46,47], leading to an
68 increased accumulation of contaminants in this compartment and possibly enhancing toxicological
69 risks for benthic organisms. The sediment compartment also shows anoxic conditions which favor
70 the accumulation of chemicals. Indeed, the anoxic environment alters the redox equilibria, and since
71 the load of metals is highly affected by the geochemical background [48,49], several anthropogenic
72 metals (e.g. Pb, Cd and Hg) and hydrophobic contaminants can accumulate in higher content
73 compared to the water column [50,51].

74 Consequently, there is an increasing necessity to quantify litter and characterize MP particles in
75 sediments [52]. The first step to gain a clearer comprehension of the effects of MPs on ecological
76 processes is to properly measure their abundance [53]. In this context, several studies have been
77 already carried out as sediments result seriously threatened by different effects of plastic pollution
78 [4,51,54–61]. However, despite the increasing awareness and concerns, a standard protocol to
79 extract MPs from these compartments is still lacking [62]. The lack of a unified method hinders
80 data harmonization and comparison in different environmental settings, making a global
81 comprehension of the amount of plastic dispersed in sediments unrealizable.

82 Principal confounding factors of MP quantification in sediments are related to: i) selection of
83 the sampling site and temporal pattern [4,52,63–67]; ii) risk of procedural contamination during
84 laboratory protocols [68], correlated also to possible reagent contamination [69]; iii) efficiency of
85 separation strategy; and iv) the lack of a harmonized measurement unit, which leads to an unreliable
86 comparison of results [70]. For instance, some data are expressed as number of MPs per mass of
87 sediments (dry or wet) [57], whereas others as items per m^2 , making the entity of contamination
88 impossible to understand [71]. As an example, the level of MPs contamination in European rivers
89 still cannot be compared due to this discrepancy in measurement units [40].

90 While wide effort has been invested in reviewing sampling procedure, little interest has focused
91 on the chemical extraction and analytical techniques for a systematic characterization of plastics
92 [62,72–76], as well as on the comparison of separation techniques to isolate MP samples from the
93 matrix, which is still missing in literature. Recent reviews, in fact, overlooked the comparison of
94 methods also in terms of costs, feasibility and sustainability of the chemicals adopted for extraction
95 [77–80]. Therefore, considering the general lack of knowledge, in this paper, we described different
96 methods of MPs extraction from sediments, considering also pros and cons. The aim of this study is
97 to support the development of a standardized protocol to allow not only data comparison, but also a
98 complete understanding of the entity of contamination in sediments by MPs. Finally, this study also
99 proposed an alternative, reproducible, green and cost-effective method for density separation.

100 **2. Reviewed Literature**

101 A total of 49 studies, carried out in different locations from 2004 to 2020, was collected and
102 compared to evaluate the whole development of the extraction techniques, starting from the first
103 deployed one up to the most recently proposed. Studies concerning MPs contamination in
104 sediments are much more than 49 (see Figure 1), but often provided information are redundant and
105 unclear. Our intention was to consider different case studies carried out with several approaches

106 without providing too much information with the aim to avoid gaining a confused and fragmentary
107 understanding.

108 Although this study is mainly focused on MPs in lacustrine sediments, we decided to include
109 also research carried out on aquatic sediments in general, to avoid the disregard of some worthy
110 methods.

111 Across all studies considered, 73.5% (N = 36) research [4,8,61,64,81–88,10,89–98,53,99–
112 104,54–57,59,60] used methods based on density separation, 10.2% (N = 5) used a density
113 separation combined with other techniques [105–108], and 6.1% (N = 3) used oil extraction strategy
114 [109–111]. The remaining studies employed elutriation [112] and electrostatic separation
115 techniques [113], as well as depolymerization and subsequent quantification methods of
116 terephthalic acid [114,115]. In few cases, different analytical protocols were proposed in
117 combination [114].

118 From Table 1, it is possible to note that different discrepancies between the considered methods
119 still exist. Besides the measurement units, also the size range of separated MPs is not consistent in
120 the available literature, which is possibly due to the lack of a univocal definition of MPs [105].
121 However, the size of particles is a key factor in establishing the extraction potentials [94] and this
122 parameter needs to be considered for the selection of the separation method to deploy. In addition,
123 quality assurance and quality control (QA/QC) factors are not always expressly illustrated by each
124 authors and, since contamination of samples is an important source of error, this aspect should be
125 taken into account as this could influence the results obtained by each applied method [116].

126 Bearing in mind these weaknesses, different extraction protocols are fully analyzed in the next
127 paragraphs, with a particular focus on density separation method, which represents the most applied
128 technique in literature so far (Table 1).

129 **Table 1:** Summary of different methods proposed in reviewed studies for the extraction of MPs from sediments. Principal parameters
 130 consider to characterize each study are: (i) method: approach apply by each author; (ii) chemicals: different reagents employed in
 131 protocols; (iii) matrix: type of sediment subjected to separation process; (iv) recovery efficiency: capacity of the protocol to separate MPs
 132 from sediments; (v) unit: measurement unit used to express the concentration of MPs in sediments; (vi) size range: dimension of considered
 133 plastic particles; (vii) quality assurance and quality control factors (QA/QC): approach used during separation process with the aim to
 134 reduce and quantify sample contamination and results goodness; (viii) country: place where studies have been carried out. Some fields are
 135 incomplete due to the lack of information in studies, highlighting different approaches applied by authors.

METHOD	CHEMICALS	MATRIX	RECOVE RY EFFICIEN CY	UNIT	SIZE RANGE	QA/QC	COUNTR Y	REFERENCE
density separation	NaCl	sediments from beaches and estuarine and subtidal sediments	-	items/mL	20 µm in diameter	-	United Kingdom	Thompson et al., 2004
density separation	NaCl	beach sediments	-	-	> 1.6 µm	-	Singapore	Ng and Obbard, 2006
density separation	NaCl	coastal sediments	-	items/mL	500 µm - 7 mm	-	Sweden	Nor, 2007

density separation	Na ₂ WO ₄	beach sediments	-	-	1.38 - 6.50 mm	stainless equipment	Hawaii	Corcoran et al., 2009
density separation	filtered seawater	beach sediments	-	items/g	2 - 20 mm	-	Brasil	Ivar do Sul et al., 2009
density separation	tap water	beach sediments	-	number of particles	2-5 mm	stainless equipment	China	Zurcher, 2009
density separation	NaCl	sediments from an estuarine area	-	items/50 mL	< 1 mm	-	United Kingdom	Browne et al., 2010
density separation	NaCl	sediments from shoreline	-	-	< 1 mm	cotton clothing	Australia, Japan, Oman, United Arab Emirates, Chile, Philippine s, Azores, South Africa, Mozambi que, UK	Browne et al., 2011

density separation	NaCl	sediments from shoreline	-	mean % abundance	250 µm - 4 mm	-	Hawaii	Carson et al., 2011
density separation	NaCl	marine sediments	68.8% - 97.5%	items/kg d.w.; mg/kg d.w.	-	-	Belgium	Claessens et al., 2011
density separation	NaCl	beach sediments	-	items/m ²	50 µm - 5 mm	plasticfree equipment	Portugal	Martins and Sobral, 2011
density separation	ZnCl□	aquatic sediments	95.5 ± 1.8	-	< 1 mm - 5 mm	plasticfree equipment	Germany	Imhof et al., 2012
density separation	ZnCl□	beach sediments	-	items/10 g d.w.	< 100 µm	triplicate analyses	Frisian Islands	Liebezeit and Dubaish, 2012
elutriation + density separation	NaI	spiked sediments	100% PVC, 98% fibers, 94%-98% microspheres	-	10 µm - 250 µm	-	-	Claessens et al., 2013
density separation	ZnCl□	beach sediments	95.5%	abundance %	< 500 µm - < 5	-	Lombardy, Lake	Imhof et al., 2013

					cm		Garda	
elutriation + density separation	NaI	beach sediments	-	items/L; kg/d.w.	-	-	Belgium	Van Cauwenbergh et al., 2013a
density separation	NaCl	sediments from shallow areas	-	items/kg d.w.	15 µm - 2.5 mm	plasticfree equipment, cotton laboratory coats, procedural blanks	Venice	Vianello et al., 2013
density separation	water	beach sediments	-	g/L	< 5 mm	-	Canary Islands	Batzan et al., 2014
density separation	NaCl	beach sediments	-	items/ g d.w.	< 5 mm	-	Canada	Mathalon et al., 2014
fluidization + density separation	(i) NaCl; (ii) NaI	beach sediments	99% ± 3.0 PE; 96% ± 6.6 PP; 97% ± 6.4 PVC; 91% ± 10.4 PET; 92% ± 9.8 PS; 68% ± 24.8 EPS; 96% ± 9.2	number of particles	500 µm - 3 mm	stainless equipment	Frisian Islands	Nuelle et al., 2014

			PUR					
fluidization + density separation	(i) NaCl; (ii) NaI	beach sediments	-	items/kg d.w.	500 µm < x < few cm	plastic free equipment, procedural blanks	Frisian Islands	Dekiff et al., 2014
density separation	CaCl ₂	beach sediments	0-40% yellow, orange and pink particles; 45% - 63% transparent particles; 60%-100% blue, violet and green particles (PE)	items/kg d.w.	< 1.5 mm	plastic free equipment, minimising the number of handling steps	Baltic coast	Stolte et al., 2015
elutriation	water	beach sediments	50.2%	-	5 mm	-	-	Zhu et al., 2015
density separation	NaCl	shoreline sediments	-	items/kg d.w.	< 300 µm - 1	stainless equipment	central Italy	Fischer et al., 2016

					mm		(Lake Chiusi, Lake Bolsena)	
oil extraction protocol	canola oil	shoreline sediments	96.1% ± 7.4	%/kg	> 400 µm	stainless equipment	Canada	Crichton et al., 2017
density separation	ZnCl ₂	estuarine sediments	95.8% ± 1.6	items/kg d.w.	100 µm - 1 mm	cleaned equipment placed inside a laminar flow hood and covered with clean aluminium foil	United Kingdom	Coppock et al., 2017
density separation	ZnCl ₂	river sediments	-	items/10 g	1 - 4 mm	control samples	United Kingdom	Horton et al., 2017
density separation	NaCl	canal and marine sediments	-	items/kg d.w.	10 µm - 5 mm	plastic free equipment; procedural blanks	Holland	Leslie et al., 2017
density separation	tap water - NaCl - NaBr - NaI - ZnBr ₂	marine sediments	200-400 µm - H ₂ O 85-95%; NaCl ± 90%; NaBr > 90%; NaI ± 95%; ZnBr ₂ ±	-	200 µm - 1 mm	cotton laboratory coats, plastic free equipment, cleaned equipment, taping technique to examine lab benches, control of atmospheric contamination, procedural blanks	Scotland	Quinn et al., 2017

			95%; 800- 1000 μ m - H 2 O 60- 80%; NaCl 70- 80%; NaBr > 80%; NaI \pm 90%; ZnBr \square >95%					
density separation	Food-grade table NaCl – reagent grade NaCl	sand	HDPE - reagent grade NaCl: 81.28%- 95.11%; food-grade table NaCl 36.99%- 74.42	μ g/kg	100 - 850 μ m	plastic free and cleaned equipment, cotton laboratory clothes	Spain	Sánchez-Nieva et al., 2017

two step density separation	ZnCl \square	bottom marine sediments	92 \pm 7%	items/kg d.w.	> 400 μ m	cotton aboratory clothes, plastic free equipment, evaluation of air dispersed MPs	Baltic Sea	Zobkov et al., 2017
electrostatic separation	Korona Walzen Scheider	quartz sand, freshwater sediments, beach sand	100%	-	63 μ m - 5 mm	-	-	Felsing et al., 2018
two step density separation	NaCl	river sediments	-	items/kg d.w.	20 μ m - 5 mm	procedural blanks, cotton laboratory clothes, plastic free equipment	China	Lin et al., 2018
centrifuged with salt solution – density separation	CaCl \square	marine sediments	-	items/kg d.w.	100 μ m - 5 mm	-	Canada	Collicutt et al., 2019
density separation	KF	river sediments	-	items/kg d.w.	< 100 μ m - > 1mm	-	China	Fan et al., 2019
density separation	mix NaCl-NaI	soil and sediments	90%	items/kg d.w.	100 μ m - 6 mm	-	China	Han et al., 2019
density separation	NaCl	strandline sediments	86% - 90%	items/kg d.w.	< 1 mm - 5 mm	plastic free equipment	Slovenia	Korez et al., 2019

oil extraction protocol	castor oil	marine beach sediments	spiked sample: 99% \pm 4.4; environmental sample: 74% \pm 13	-	300 μ m - 1mm	plastic free equipment	-	Mani et al., 2019
density separation	NaCl	stream sediments	-	items/kg d.w.	500 μ m - 2mm	plastic free equipment, procedural blanks	Tunisia	Toumi et al., 2019
density separation	NaI	surface and core sediments	-	items/kg d.w.	50 μ m - 5mm	filtration of all employed liquids, plastic free equipment, cotton laboratory clothes, procedural blanks	China	Wang et al., 2019
PET depolymerization and quantification of the terephthalic acid (TPA) monomer	Dichloromethane, diethyl ether, xylene, methanol, hydrogen peroxide, sulfuric acid, acetic acid, sodium hydroxide, hexadecyl-	marine and freshwater sediments	98.2%	ppb	-	preliminary evaluation of exhaustiveness of the recovery of TPA	Italy	Castelvetro et al., 2020

	tributyl-phosphonium-bromide, zinc acetate, deuterated chloroform, hexafluoroisopropanol							
combination of different analytical protocols	-	freshwater sediments	-	ppm	< 2mm	-	Italy	Corti et al., 2020
oil extraction protocol	canola oil	river sediments	67% \pm 2.3 (fibres); 63% \pm 3.5 (microbeads); 61% \pm 2.2 (fragments)	items/kg d.w.	< 400 μ m	laminar flow hood, plastic free and cleaned equipment, cotton laboratory clothes, procedural and contamination blanks	Canada	Crew et al., 2020
PET depolymerization and	methanol, butanol, hydrochloric	beach sediments	94.5% - 107.1%	mg/kg	-	-	Germany	Müller et al., 2020

quantification of the terephthalic acid (TPA) monomer	acid, potassium hydroxide							
density separation	(i) NaCl; (ii) ZnCl ₂	beach and bed marine sediments	> 85%	recoveries %	-	plastic free equipment, cotton laboratory clothes, control blanks, all water used during procedures was filtered. All steps were carried out inside a flow cabine	Portugal	Rivoira et al., 2020
density separation	ZnCl ₂	organic rich sediments	90.7% ± 7.7	items/L	100 µm-3 mm	plastic free equipment, cotton laboratory clothes, procedural blanks	Japan	Vermeiren et al., 2020
heating assisted density separation	NaH ₂ PO ₄	beach sediments	93%	items/kg d.w.	100 µm-5 mm	plastic free equipment	China	X. Zhang et al., 2020
density separation	NaCl - KI	deep-sea sediments	-	items/kg d.w.	100 µm-5 mm	plastic free equipment, cotton laboratory clothes, procedural blanks	western Pacific Ocean	D. Zhang et al., 2020
two step density separation	NaCl	river sediments	-	items/kg d.w.	300 µm-5 mm	cotton laboratory clothes, evaluation of atmospheric MPs, procedural blanks	China	L. Zhang et al., 2020

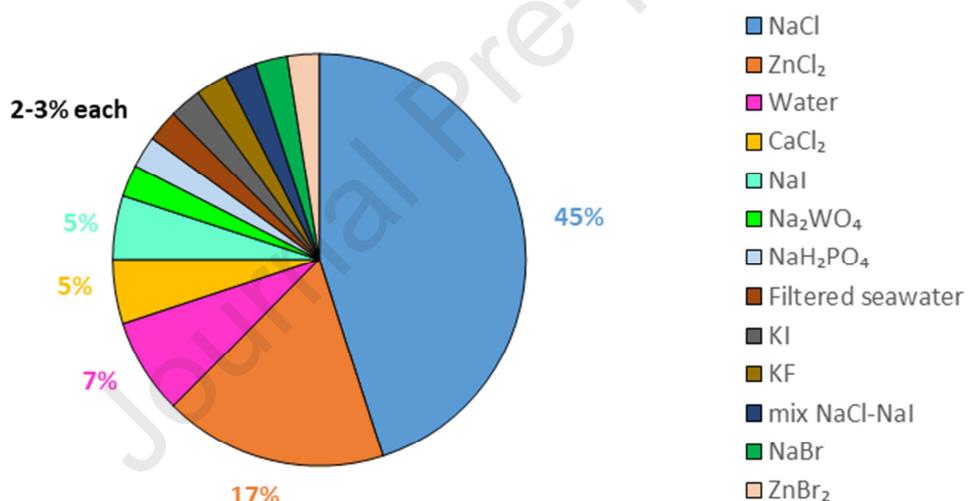
137 **3. Proposed methods for extraction of MPs**

138 The separation of MPs from complex matrices is a laborious practice that can represent an
 139 important source of error in the MPs quantification [117]. The content of organic matter in
 140 sediments is affected by the environmental conditions of deposition: in lentic ecosystems, where the
 141 decomposition rate is high, the quantity of organic matter found in sediments results higher than
 142 that in riverine ecosystems [118]. A good estimate of the organic content and the application of an
 143 adequate digestive process are key steps for an efficient separation of plastic particles [119]. Indeed,
 144 the main factor that affects results is the tendency of confusing the plastic particles with residual
 145 natural debris and organic matter. Furthermore, automatized techniques for this process are still not
 146 reported, so the extraction protocol may take long times. Therefore, finding an efficient and easy
 147 applicable protocol would maximize the success of the process. In the following paragraphs, we
 148 report the principal methods proposed in literature for MP extraction.

149 *3.1. Density separation*

150 Density separation is a method based on differences in densities between sediments and MPs
 151 [111]. The separation between sediments (with an average density of 2.65 g/cm³ [21,120]) and MPs
 152 (which are less dense, with a maximum density of 1.58 g/cm³, Table 2) is achieved by producing a
 153 fixed density solution for the separation, mixing filtered or distilled water with a variable amount of
 154 a selected salt. In this way, while sediments particles settle down, MP particles float on the
 155 superficial layer of the dense solution [111,121] and can be easily separated to undergo further
 156 analysis. In this process, the selection of the density of the extraction solution in relation to that of
 157 the polymer type is crucial [122]. Therefore, the different densities of plastics and those of the
 158 extraction solutions reported in literature are summarized in Table 2 and 3, respectively.

159 Density separation to extract MPs from sediment matrix is the most used technique [123],
 160 representing 73% of considered studies (Table 1). Although this method appears to be easily
 161 applicable, a careful choice of the most appropriate salt is required to achieve the right density of


162 the solution and the best recovery rate of plastic. Moreover, during the density separation process,
 163 organic matter may float with plastic particles, making complicated to discriminate plastic litter
 164 from organic matter and, therefore, the method might require further treatments (e.g., chemical
 165 digestion [102,[125]).

166 **Table 2:** Densities of the principal types of plastic polymers [126]

Polymer	Density (g/cm ³)
polyethylene (PE)	0.917 - 0.965
polypropylene (PP)	0.9 - 0.91
polystyrene (PS)	1.04 - 1.1
Nylon	1.02 - 1.05
Polyester	1.24 - 2.3
polyvinylchloride (PVC)	1.16 - 1.58
polyethylene terephthalate (PET)	1.37 - 1.45
Polyurethane	1.2

167 Sodium chloride (NaCl) is the most used salt to perform density separation, representing 45%
 168 of studies from literature (Figure 2). The choice of NaCl is principally related to the fact that this

169 salt is low cost and “environmentally friendly” [66,122]. However, some polymers (principally
 170 polyester, PVC and PET) have a higher density than NaCl (1.2 g/cm³) and, therefore, can not be
 171 separated using this approach [111]. In order to increase the recovery rate of MPs, some authors
 172 have tested other higher density salts, such as zinc chloride (ZnCl₂) [53,55,57,88,101,122], sodium
 173 iodide (NaI) [60,122], calcium chloride (CaCl₂) [92], sodium tungstate (Na₂WO₄) [82],
 174 monosodium phosphate (NaH₂PO₄) [102], sodium bromide (NaBr) [94], zinc bromide (ZnBr₂) [94],
 175 potassium iodide (KI) [61] and potassium fluoride (KF) [98]. In a recent study from 2019, Han et al.
 176 [99] proposed a mix between NaCl and NaI to increase the recovery rate of MPs, reaching a density
 177 of 1.5 g/cm³. Differently, some other authors tried to perform density separation by using tap water
 178 [83,90,94,127] or filtered seawater [54].

179

180 **Figure 2:** Chemicals used to perform density separation in considered studies.

181 The various alternative of chemicals for density extraction procedure led to confusion in choice
 182 of the most suitable method. To clarify the most suitable salts for density separation, a comparison
 183 of the main physicochemical characteristics of the different salts proposed in literature is reported in
 184 Table 3, considering also the sustainable and economic aspects.

185 From a density prospective, since polymer vary from 0.9 (PP) to 1.58 (PVC) g/cm³ in density,
 186 ZnCl₂, NaI, KI, ZnBr₂ and KF are considered the best salts to achieve an efficient density

187 separation. However, while these substances provide better performances of extraction [122], they
 188 have the drawback to be dangerous for aquatic biotas (Table 3) [111] and present serious health
 189 hazards; zinc chloride, for instance, can be corrosive. Moreover, NaI, Na₂WO₄, KI and KF are
 190 expensive, so they may not be suitable to achieve MPs extraction using large amount of sample or
 191 for long monitoring programs.

192 Alternatively, NaH₂PO₄ appears to be a good compromise: it allows reliable extraction
 193 performances, it is cost-effective, non-hazardous, and able to achieve a good recovery rate [102].
 194 However, the extraction with NaH₂PO₄ could be overly complex due to the necessity to heat the
 195 solution to enhance its density, possibly decreasing method replicability. CaCl₂ represents another
 196 good alternative due to the low cost and relatively low risks, but this compound has a density
 197 ranging between 1.3 and 1.35, which does not allow the retention of PET (1.37 – 1.45) and PVC
 198 (1.16 – 1.58) particles. For this reason, CaCl₂ density should be incremented for extraction
 199 procedure.

200 To the best of our knowledge, ZnCl₂ has emerged as the most performing density separation
 201 method in terms of both recovery [53,55,87,101] and process simplicity. However, ZnCl₂ is very
 202 expensive, and therefore should be used for a second density separation after a NaCl step, [104].
 203 Moreover, it is an hazardous substances, and thus, its use should be avoided.

204 Once the most appropriate salt has been selected, some attention should be given to develop a
 205 relevant procedure protocol to perform the MPs analyses, as well to the glassware and materials to
 206 be used. In this context, some authors have based their density separation protocol on only one
 207 extraction [8,10,81], whereas some others performed a second extraction to achieve the best
 208 separation rate [57,60,85,86,89,101]. Since several studies have recommended the necessity to
 209 repeat flotation duplicating the process could be a good strategy to optimize results [57,105]. With
 210 regard to materials to use, authors usually achieve a satisfying separation by using laboratory
 211 glassware [8,56,86,89]; however, in some other cases, special devices such as Munich Plastic
 212 Sediment Separator (MPSS) [87], Sediment-Microplastic isolation unit (SMI) [53], and a separation

213 column with a top overflow (OC-T) [101] have been developed. In general, the use of canonical
 214 glassware would be advantageous as this, compared to special devices, does not force the physical
 215 separation of plastic particles from sediments. Moreover, the use of standard glassware combined
 216 with an appropriate extraction solution have already proved to achieve an easy and feasible MP
 217 analyses.

218 **Table 3:** Characteristics of substances used to achieve density separation in considered
 219 literature. Different colors are used to highlight the quality of each features (green for
 220 good, orange for average and red for poor). Data on chemicals characteristics are retrieved
 221 from ECHA database (European Chemicals Agency, <https://echa.europa.eu/information-on-chemicals>), while prices are from Sigma-Aldrich (www.sigmaaldrich.com)

SUBSTANCE	FINAL DENSITY OF SOLUTION (g/cm ³)	CAS no.	HAZARD CLASSIFICATION	PRICE (€/kg)
Sodium chloride	1.2	7647-14-5	No hazards have been classified	107.00 (reagent grade) 0.45 - 3.00 (table grade)
Zinc chloride	1.5 - 1.8	7646-85-7	Severe skin burns and eye damage; very toxic to aquatic life with long lasting effects; harmful if swallowed	137.00
Sodium iodide	1.8	7681-82-5	Damage to organs through prolonged or repeated exposure; very toxic to	574.00

			aquatic life; causes serious eye irritation and skin irritation	
Calcium chloride	1.3 - 1.35	10043-52-4	Causes serious eye irritation	81.20
Sodium tungstate	1.4	10213-10-2	Harmful if swallowed	504.00
Monosodium phosphate	1.4 - 1.45 (40°C)	7558-80-7	No notified hazards by manufacturers, importers, or downstream users	91.10
Potassium iodide	1.7	7681-11-0	Damage to organs through prolonged or repeated exposure. Additionally, the classification provided by companies to ECHA in CLP notifications identifies that this substance is toxic to aquatic life with long lasting effects, may damage fertility or the unborn child, causes serious eye and skin irritation, is harmful if swallowed, may cause an allergic skin reaction, may cause allergy or asthma symptoms or breathing difficulties if inhaled and may cause respiratory irritation.	306.00
Sodium bromide	1.37	7647-15-6	No hazards have been classified	138.60
Zinc bromide	1.7	7699-45-8	Severe skin burns and eye damage,	195.00

			toxic to aquatic life with long lasting effects, harmful if swallowed, may cause allergic skin reactions	
Potassium fluoride	1.5	7789-23-3	Toxic if swallowed, toxic in contact with skin, and toxic if inhaled	316.00

223

224 After a proper extraction, floating particles can be separated from the flotation
 225 medium using different procedures. The most common one is generally performed by
 226 filtering the superficial layer [8,81,87] or by adding a dense solution in excess to overflow
 227 supernatant [57,95]. Other complementary processes can be applied after the extraction
 228 procedure, which includes elutriation or centrifugation, both allowing to reduce possible
 229 sample loss, and therefore increasinge the recovery rates [105,107,108]. Collicutt et al.
 230 [106], for instance, have applied a method to extract MPs that combines the use of a CaCl_2
 231 saturated solution with centrifugation; other authors performed a MPs extraction by
 232 preceding floatation in a saturated NaI solution with an elutriation step, with the aim to
 233 decrease the sediment sample mass and improve the separation [108]. Elutriation process
 234 can be also applied as a separate method [127]: it consists in an upward stream of gas or
 235 liquid by which ligther particles are separated from heavier ones.

236 3.2. *Oil extraction protocol (OEP)*

237 The extraction of MPs from sediments using oil is an innovative method based on the
 238 oleophilic properties of plastics. This method is independent from the plastic density
 239 characteristics and is unaffected by the presence of organic matter in samples, which

240 differently floats together with MPs, when density separation is applied. Furthermore, this
241 process presents high cost-effectiveness and easiness of application [107–109].

242 The oil extraction protocol (OEP) was firstly proposed by Crichton et al. [111] and later
243 revisited by other authors [107,108]. Practically, the protocol consists in adding few
244 milliliters of oil to the filtered water mixed with dry sediments, and then, placing the
245 solution in a shaker, to allow the oil to get in contact with the sample; these steps are
246 followed by a funnel extraction. At this point, the oil layer is filtered, and then filters are
247 treated with reagent (e.g., alcohol or no-foaming detergent) to remove the oil residues that
248 could affect subsequent analysis.

249 One of the procedural errors that all protocols need to face is derived from the
250 possibility that particles might remain in sediments without dispersing in oil [109,111] or
251 remain on filters when manually collected [108], leading to an underestimation of MP
252 abundance. Despite these limitations, Crichton et al. [111] and Mani et al. [110] reported
253 good recovery rates on spiked sediment samples, but those rates decreased when tested on
254 a real environmental sample [109].

255 Potential weaknesses have been identified from this first proposed method, that
256 consist principally in the incompatibility of the detergent and reagent alcohol with the
257 Raman and FTIR analysis, and in the underestimation of coarser particles of extracted
258 MPs, due to the outlets size of the separation funnel used in the protocol [129]. Further
259 studies tried to adjust several steps of this method to improve the overall performances.
260 For instance, Scopetani et al. [128] resolved these weaknesses by promoting separation in
261 polytetrafluoroethylene cylinders equipped with a removable cap and a piston, when

262 dealing with MPs in soil and compost. Following this protocol, samples are frozen at -40°C
263 and only the oil layer is pushed out and filtered. Filters are subsequently rinsed with
264 hexane, rather than reagent alcohol, to avoid interferences with spectroscopic methods
265 [111], and polymer particles are collected to undergo further analysis.

266 Overall, OEP is an efficient method that allow to overcome problems related to density
267 and costs of reagents. From the available literature, generally authors used 3 mL to a
268 maximum of 10 mL [110] of oil for each extraction, and, considering treating 50 g of
269 sediments at time, with 1 L of oil is possible to achieve separation of 5 kg and 17 kg of
270 sediments, respectively.

271 Besides oil, the use of detergents, alcohol [111] or hexane [109] is needed to clean filters
272 and, therefore, to characterize polymers by spectroscopic analysis. This cleaning step
273 implies that possible sample contamination could additionally arise, even if performed
274 directly on filtration unit [111]. Moreover, the use of other substances increases costs and
275 the environmental hazard of the method. To avoid the use of additional reagents, Mani et
276 al. [110] proposed to pick separated particles by hand to perform chemical analysis by
277 FTIR, however, this alternative could easily cause the loss of particles, leading to
278 underestimation.

279 In summary, research effort is still needed to optimize the protocol and to reduce the
280 number of steps involved to reduce possible source of errors and sample contamination.

281 *3.3. Other proposed methods*

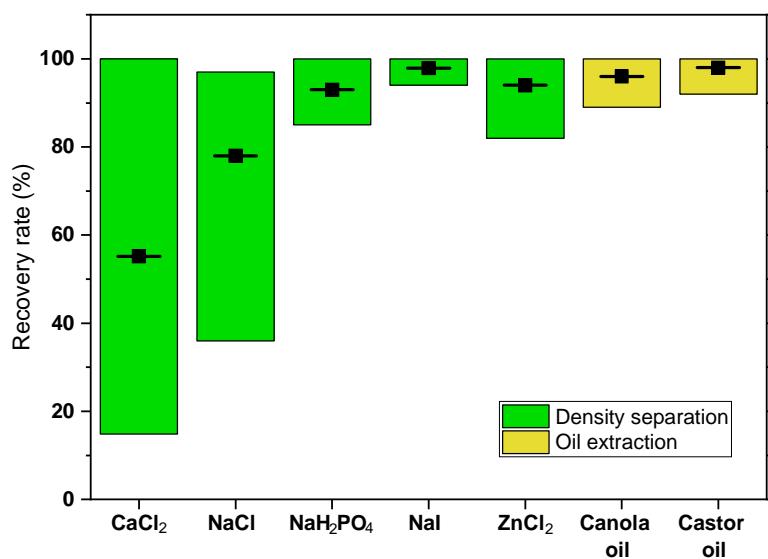
282 In addition to the use of density separation and OEP, Felsing et al. [113] performed
283 electrostatic separation to achieve MP separation from sediments , other authors tried to
284 pressurize fluid extraction [130], others used depolymerization and subsequent
285 quantification of terephthalic acid [114,115], and Corti et al. a combination of different
286 analytical protocols [131]. All the mentioned procedures showed notable results, with
287 relatively fast separations, however, they are seldom used since they require complex
288 instrumentation settings. The following paragraphs described in details the
289 abovementioned procedures.

290 3.3.1. Electrostatic separation

291 The electrostatic separation [125] permits to separate plastic particles from the matrix,
292 basing on their electrostatic properties [113].

293 In the first study reporting this methodology [113], the authors used a Korona-
294 Walzen-Scheider (KWS) separator, manufactured by Hamos GmbH (Penzberg, Germany).
295 In this process, the sample is inserted in the system by a filling funnel and then the
296 particles are scattered onto the metal drum by the vibrating conveyer. By rotating, metal
297 drum brings particles into a high-voltage field where the electrostatic charging of particles
298 takes place. Due to the rotational movement of the drum, the particles are discarded into
299 different sample collectors according to their speed of discharge: non-conductive materials
300 (MPs) are slower than conductive materials (sands grains) and so are collected in separate
301 discharged zones.

302 Felsing et al. [113] obtained a separation efficiency as high as nearly 100%,
303 demonstrating the effectiveness of this method. Electrostatic separation allows to
304 overcome issues of density and possible alteration of MPs structure caused by chemicals
305 [108]. Moreover, both sample handling and number of procedural steps are reduced,
306 increasing method replicability. However, a separator device could be very expensive and
307 unprofitable to analyze small amounts of sediments, and this is the reason why the use of
308 this method is still limited.


309 3.3.2. Pet depolymerization and quantification of terephthalic acid

310 This method has been proposed with the aim to quantify PET micro and nanoparticles
311 using an accurate and sensitive protocol [114,115]. It consists of an aqueous alkaline
312 depolymerization of PET with a phase transfer catalysis, followed by an HPLC
313 quantification of terephthalic acid (TPA), which is assumed to be the only dicarboxylic
314 acid comonomer in this polymer. The alkaline depolymerization of PET results in the
315 formation of 1:1 mixture of TPA salt and ethylene glycol, then, by quantifying TPA, it is
316 possible to derive the amount of PET in the sample.

317 The TPA quantification can be affected by interference with other organic compounds,
318 however the recovery rate is up > 94% [114,115]. Limitations of this process are several:
319 first only PET can be analyzed, secondly, samples are destroyed, making further
320 investigations unavailable. Finally, this procedure involves the use of several chemicals to
321 perform the reactions and requires expensive equipment.

322 **4. Comparison of proposed methods**

323 From the comparison of the described techniques, it emerges that recovery efficiency
 324 shows a wide variance (Figure 3), even when the same method is applied. In the case of
 325 density separation, the salt selected to perform the separation not only can lead to
 326 differences in recovery rates, but also to high variance [53,101]. This may depend on
 327 variability in the procedures used by each author, and from the density of extracted plastic
 328 particles, which, overall, highlights the urgent need to develop a standard procedure
 329 protocol. Another issue that might influence the extraction rates is related to the polymer
 330 particles size range. As highlighted in a study carried out by Quinn et al. [94], same
 331 reagents show different efficiency based on the target MP sizes. However, the whole
 332 considered density separation methods shown a recovery efficiency > 80%, except for
 333 separations performed with food-grade table NaCl [95] and CaCl₂ [92]. In fact, Stolte et al.
 334 [92] revealed the efficiency rate for two samples which are 49% and 62% respectively, with
 335 an average value of 55,5%.

336

337 **Figure 3:** Comparison of recovery rates reachable on spiked sediments using density
338 separations with different salts, and with oil extraction procedures on spiked sediments.
339 Red and yellow areas indicate the ranges, while black symbols indicate the average values.
340 Data for CaCl₂ are from Stolte et al., 2015 [92]; data for NaCl are from Claessens et al., 2011
341 [85], Korez et al., 2019 [59], Sanchez-nieva et al., 2017 [95]; data for NaH₂PO₄ from Zhang et
342 al., 2020 [102]; data for NaI from Claessens et al. 2013 [105]; data for ZnCl₂ from Vermeiren
343 et al., 2020 [101], Coppock et al., 2017 [53]; data for canola oil from Crichton et al., 2017
344 [111]; data for castor oil from mani et al., 2019 [110]; data for olive oil from Scopetani et al.,
345 2020 [128]. Only studies reporting recovery rates are depicted, and, regarding density
346 separation, only the most used salts.

347 Furthermore, a general trend observed in literature showed lower recovery values in
348 real environmental samples compared with spiked ones. This fact is evident in the study
349 carried out by Mani et al. [110]. Authors reported a recovery rate of 99% \pm 4.4% on spiked
350 sediments, while only 74% \pm 13% of MPs extracted from environmental samples. This
351 discrepancy might be related to the high heterogeneity in shape, size and color of
352 environmental plastic debris compared with laboratory-prepared plastic particles used for
353 spiking, making both the visual inspection and quantification after extraction more
354 complicated. The relation between the extraction efficiency and the particles aspect is
355 highlighted by Stolte et al. [92]. In this study, yellow, orange and pink particles are
356 recovered with an efficiency ranging from 0 to 40%, whereas blue, violet, and green
357 particles from 60% to 100%. The inefficient recovery of some particles may depend on the
358 difficulties related to visual identification carried out by the operator [132]. Moreover, the

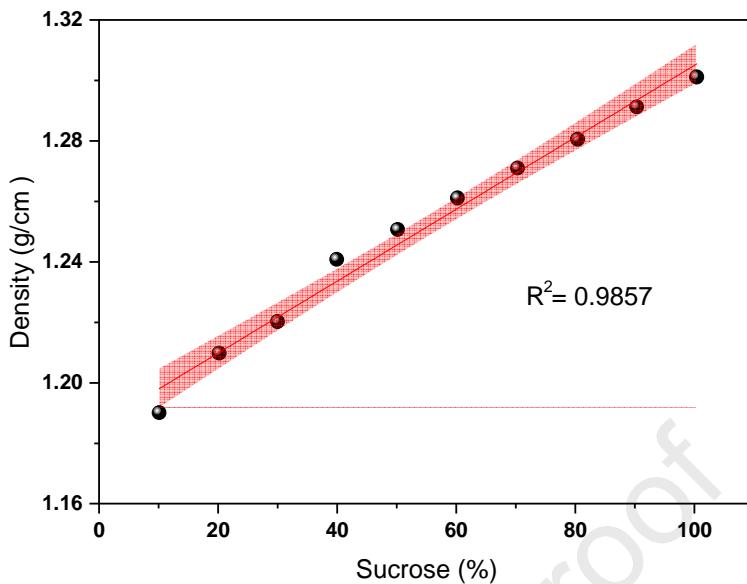
359 visual discrimination of plastic particles gets also particularly problematic when organic
 360 matter and sediment grains are not completely removed.

361 In summary, relevant characteristics that need to be considered when selecting the
 362 most promising protocol for future studies include precision, reproducibility, and costs of
 363 the extraction method in relation to the targeted MPs. On this regard, all methods are
 364 summarized in table 4, considering also their suitability.

365 **Table 4:** Suitability of proposed methods. +: favorable; ±: medium; -: unfavorable

METHOD	PRECISION	REPRODUCIBILITY	COST
Density separation	±	+	±
Oil extraction protocol	±	+	+
Electrostatic separation	+	+	-
Chemical extraction	±	±	-

366 According to the parameter established in table 4 and the recovery rates showed in
 367 table 1, the electrostatic separation appears to be the most efficient method, but not for
 368 routinely plastic extraction, due to high costs and complexity of process. On the contrary,
 369 both the density separation and OEP are suitable techniques for routinely analysis. A more
 370 detailed comparison of these methods is reported in figure 3, which addresses the most
 371 suitable extraction [53,59,85,87,92,95,99,101,102,109–111,128].

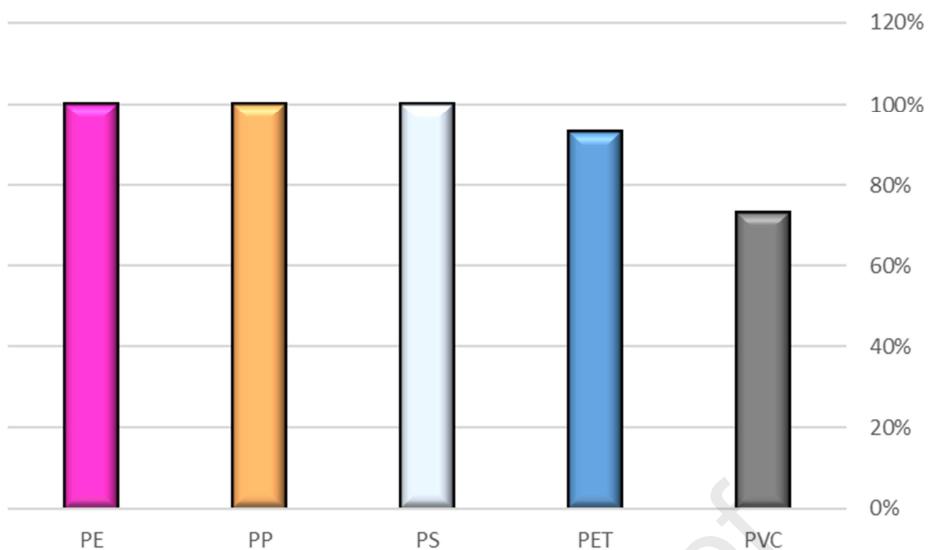

372 Although the number of recovery efficiency rates reported for OEP is lower than that
373 for density separation, data appear to be more homogeneous (Figure 3). Overall, recovery
374 rates for both density separation and OEP are mainly above 80%, with exception for CaCl_2
375 and NaCl , which show high variance of extraction recoveries. In summary, although some
376 aspects need to be further addressed to improve their recovery efficiency and replicability, these
377 procedures are easily reproducible and cost effective.

378 **5. An environmentally friendly alternative**

379 To reach a suitable and green method to extract MPs from sediments, we propose a density
380 separation using a mixture of NaCl and sucrose. This method is based on a low cost, widely used
381 and environmental friendly reagent for separation in biological field [133,134].

382 *5.1. Preliminary evidence*

383 As previously reported, a NaCl saturated solution has the limit of being not dense enough to
384 efficiently separate all type of plastic particles, however, by mixing NaCl with sucrose, it is possible
385 to increase its density. In figure 4 the experimental relation between the percentage of added
386 sucrose (Carlo Erba reagents, RPE grade) and the density of the NaCl saturated solution is reported.
387 These measurements have been produced after laboratory procedures carried out at the University
388 of Insubria.


389

390 **Figure 4:** Relation between % (weight/volume) of added sucrose and density of NaCl saturated
 391 solution. Black dashed line indicates the regression line and light blue area indicate the 95%
 392 confidence interval.

393 Using a saturated NaCl solution (prepared with ultrapure water) with an addition of 100%
 394 (weight/volume) sucrose, a density of approximately 1.30 g/cm^3 was achieved. To prepare this
 395 solution, small amounts of sucrose were added to the saturated solution on a magnetic stirrer
 396 equipped with a hot plate. The solution was heated at 50°C to accelerate the dissolution of sucrose.

397 MPs, with size range of $500 \mu\text{m}$ to 3 mm , were produced by mechanical fragmentation of
 398 larger items. We selected polymers of this size range to test this method because larger MPs are
 399 easily detectable; moreover, the use of these particles contributed to identify possible method
 400 weaknesses related to the viscosity of the solution. In this light, 10 MP particles for each type were
 401 insert in different beakers, then NaCl/sucrose solution was added, and beakers were vigorously
 402 shaken to verify if plastic particles would sink or float on solution surface. Laboratory tests were
 403 carried out in triplicate.

404 Mean flotation percentage values for each polymer are provided in figure 5, while data about
 405 flotation results in table S1.

406

407 **Figure 5:** Mean flotation % for each polymer basing on 3 flotation tests. On y-axis % mean
 408 flotation is reported.

409 PS (1.04 – 1.1 g/cm³), PE (0.917 – 0.965 g/cm³), and PP (0.91 g/cm³) responded to the treatment
 410 according to their densities, reaching a mean flotation of 100%, whereas heavier PET (1.37 – 1.45
 411 g/cm³) and PVC (1.58 g/cm³) reached a mean flotation of 93.30% and 73.30%, respectively.

412 It should be noted that some high-density polymers (e.g., PVC) can be partially recovered even if
 413 the density of the solution is theoretically not supposed to separate all types of plastics. Indeed,
 414 besides the density factor, the viscosity of the solution could influence particles separation as well.
 415 In the current study, the viscosity of the sucrose solution has been calculated based on the equation
 416 proposed by Galmarini et al. [135]:

$$viscosity = A_0 e^{(A_1 * c)}$$

417 where A_0 and A_1 are empirical parameters (at 20°C: $A_0 = 0.586$; $A_1 = 0.059$) and c is the
 418 concentration expressed as g of sucrose/100g. Assuming that NaCl does not promote the increasing
 419 of the solution viscosity, the viscosity of the present sucrose solution is about 213 mPa.

420 *5.2 Evaluation of recovery efficiency on spiked sediments*

421 Since preliminary tests highlighted the possibility to theoretically achieve a complete
 422 separation not only of lighter particles (PE, PP, PS) but also of heavier polymers, such as PVC and
 423 PET, we tested this method on spiked sediments.

424 To evaluate the separation efficiency, 3 aliquots of 50 g d.w. sediments were put in 3 different glass
 425 beakers and spiked with a known number of MPs produced in laboratory by mechanical
 426 degradation. After the addition of MPs, sediments were put in a separation funnel. NaCl/sucrose
 427 solution was added in 3:1 ratio (150 mL of solution for 50 g d.w. sediments) and then the separation
 428 funnel was vigorously shaken. After completed sedimentation, spiked sediments were separated
 429 from the solution, that was directly collected into a Büchner funnel for filtration. Sediments were
 430 rinsed 3 times, and the recovered MPs were collected on cellulose filters and then, visual sorted
 431 using a stereoscope to assess the separation efficiency. This separation process was tested in 4
 432 replicates, and the recovery rates achieved in each test are shown in table S2.

433 More than half of spiked MPs were separated in each test, with a mean %R.R of
 434 approximately 82.5%. As expected, PP and PE showed a recovery rate ranging from 90% to 100%,
 435 while PS, a recovery rate slightly lower than the other light polymers. This is possibly related to the
 436 shape of PS fragments, which enhance the trapping in sediments grains, or to the white color of PS.
 437 Indeed, this coloration pose difficulties during visual sorting as filters are white as well. The
 438 addition of sucrose to a NaCl saturated solutions allowed also to partially recover heavier polymers
 439 such as PET (mean R.R. 73,3%) and PVC (mean R.R. 53,3%).

440 Considering the results presented here, the addition of sucrose could be a good environmentally
 441 friendly strategy to improve NaCl saturated solution density, and, thus, to avoid the use of
 442 dangerous chemicals. However, although the promising preliminary results, this method needs to be
 443 further developed and validated to overcome procedural obstacles related to both MPs sizes and
 444 stickiness of solution, that could promote particles adhesion on vessels surfaces.

445 *5.3. QA/QC procedures*

446 To avoid possible sample contamination and the consequent associated errors in estimating the
447 efficiency of the method, laboratory tests were carried out in quadruplicate and procedural blanks
448 were used for each separation test. During the separation process, a glass beaker filled with
449 NaCl/sucrose solution was kept on the workstation to evaluate the potential contamination of the
450 handled sample. Moreover, to avoid contamination with air dispersed fibers, cotton laboratory
451 clothes were used, and work position was kept clean all time. Plastic free equipment was used and
452 was accurately rinsed with distilled water before each use. When possible, a flow cabine was used.

453 **6. Conclusions**

454 In summary, this review highlights a complete lack of a harmonized process for the monitoring
455 of MPs in sediments from the available literature. By considering precision, reproducibility,
456 greenness, and costs of each described method, the most suitable approach appears to be the oil
457 extraction protocol. Oils are, indeed, quite cost-effective, and the extraction requires a small amount
458 of oil to be performed [110,128]. The precision of the method depends on the accuracy by which
459 each step is carried out, and, therefore, could be increased by developing a pre-treatment protocol.
460 In fact, the interference with natural matrix in environmental samples represents a factor highly
461 affecting results [110], as showed in spiked samples, with a recovery rates > 90% [110,111].

462 Despite the suitability of OEP, density separation remains the most applied technique. This
463 method has the advantage of easiness in experimental setup as it does not require any specific
464 instrumentation and lacks complex operations. Furthermore, this method is a non-destructive
465 technique, which allows to characterize samples also after the quantification procedure.
466 Nonetheless, a density separation method which results safe and, at the same time, efficient is still
467 not present in literature. Therefore, a procedure that increases density without employing harmful
468 substances is still needed.

469 In this context, the use the sucrose density gradient technique proposed here might represent an
470 innovative green solution, that would allow to separate heavier polymers, as supported by our

471 preliminary findings. Moreover, besides provide a good strategy to separate plastic particles in a
 472 safe way, NaCl/sucrose solution is economically competitive. Considering using 1 kg of sucrose
 473 and about 260 g of NaCl in 1 L of deionized water and to recycle solution adjusting density after
 474 filtration, investing about 15.00 € is possible to perform separation on about 100 g d.w. sediments.
 475 However, although the reported performances are good for the 500 µm -3 mm size range, the
 476 extraction strategy needs to be investigated with smaller particles, and a method needs to be
 477 complete developed to overcome practical obstacles during the process (e.g., the collection of
 478 plastic particles in the viscous solution). Despite these general considerations, the aspect related to
 479 the identification techniques need to be further developed. Indeed, apart from the method choice, if
 480 the separated material needs to be filtered, it is important that filter is not too crowded in order to
 481 perform a successful characterization [91].

482 After the disentangling of different pros and cons of extraction methods to contribute to the
 483 development of a harmonized extraction protocol, the future perspectives in MP analysis in
 484 sediments include:

- 485 1. the application of green, fast and reliable extraction methods in real samples and their test
 486 on field scale (e.g. long-time trends or regional monitoring programs);
- 487 2. inter-laboratory tests for the creation of harmonized standard protocols [132];
- 488 3. nanoplastics extractions from sediments, which shows more critical aspects for analytical
 489 protocols;
- 490 4. a standardized quantification systems (e.g. measurement units) to better compare studies in
 491 different areas worldwide and better quantify plastic pollution.

492 **Author Contributions:** A. Bellasi, G. Binda, R. Bettinetti conceptualization; A. Bellasi formal
 493 analysis; A. Bellasi writing-original draft; G. Binda, A. Bellasi data curation; G. Binda, A. Pozzi, R.
 494 Bettinetti, G. Boldrocchi writing-review and editing; R. Bettinetti supervision. All authors have read
 495 and agreed to the published version of the manuscript.

496 **Conflicts of Interest:** The authors declare no conflict of interest.

497 1. Gregory, M.R. Virgin plastic granules on some beaches of Eastern Canada and Bermuda.

498 *Mar. Environ. Res.* **1983**, *10*, 73–92.

499 2. Rochman, C.M.; Hoellein, T. The global odyssey of plastic pollution. *Science (80-.)*. **2020**,

500 368, 1184–1185.

501 3. Andrady, A.L. Microplastics in the marine environment. *Mar. Pollut. Bull.* **2011**, *62*, 1596–

502 1605.

503 4. Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R.

504 Accumulation of microplastic on shorelines worldwide: Sources and sinks. *Environ. Sci.*

505 *Technol.* **2011**, *45*, 9175–9179.

506 5. Dris, R.; Imhof, H.; Sanchez, W.; Gasperi, J.; Galgani, F.; Tassin, B.; Laforsch, C. Beyond

507 the ocean: Contamination of freshwater ecosystems with (micro-)plastic particles. *Environ.*

508 *Chem.* **2015**, *12*, 539–550.

509 6. Pinto da Costa, J.; Reis, V.; Paço, A.; Costa, M.; Duarte, A.C.; Rocha-Santos, T.

510 Micro(nano)plastics – Analytical challenges towards risk evaluation. *TrAC - Trends Anal.*

511 *Chem.* **2019**, *111*, 173–184.

512 7. PlasticsEurope Plastics – the Facts. *Plast. – Facts 2018* **2018**, 38.

513 8. Ng, K.L.; Obbard, J.P. Prevalence of microplastics in Singapore's coastal marine

514 environment. *Mar. Pollut. Bull.* **2006**, *52*, 761–767.

515 9. Blair, R.M. Micro- and Nanoplastics Pollution of Freshwater and Wastewater Treatment
516 Systems. *Springer Sci. Rev.* **2017**, *5*, 19–30.

517 10. Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.;
518 McGonigle, D.; Russell, A.E. Lost at sea: where is all the plastic? Supplemental Material.
519 *Science* **2004**, *304*, 838.

520 11. Setälä, O.; Fleming-lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in
521 the planktonic food web. *Environ. Pollut.* **2014**, *185*, 77–83.

522 12. Watts, A.J.R.; Lewis, C.; Goodhead, R.M.; Beckett, S.J.; Moger, J.; Tyler, C.R.; Galloway,
523 T.S. Uptake and retention of microplastics by the shore crab *carcinus maenas*. *Environ. Sci.*
524 *Technol.* **2014**, *48*, 8823–8830.

525 13. Syberg, K.; Khan, F.R.; Selck, H.; Palmqvist, A.; Banta, G.T.; Daley, J.; Sano, L.; Duhaime,
526 M.B. Microplastics: Addressing ecological risk through lessons learned. *Environ. Toxicol.*
527 *Chem.* **2015**, *34*, 945–953.

528 14. Rummel, C.D.; Löder, M.G.J.; Fricke, N.F.; Lang, T.; Griebeler, E.M.; Janke, M.; Gerdts, G.
529 Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. *Mar.*
530 *Pollut. Bull.* **2016**, *102*, 134–141.

531 15. Collard, F.; Gilbert, B.; Compère, P.; Eppe, G.; Das, K.; Jauniaux, T.; Parmentier, E.
532 Microplastics in livers of European anchovies (*Engraulis encrasicolus*, L.). *Environ. Pollut.*
533 **2017**, *229*, 1000–1005.

534 16. Pazos, R.S.; Maiztegui, T.; Colautti, D.C.; Paracampo, A.H.; Gómez, N. Microplastics in gut

535 contents of coastal freshwater fish from Río de la Plata estuary. *Mar. Pollut. Bull.* **2017**, *122*,
536 85–90.

537 17. Ory, N.C.; Gallardo, C.; Lenz, M.; Thiel, M. Capture, swallowing, and egestion of
538 microplastics by a planktivorous juvenile fish. *Environ. Pollut.* **2018**, *240*, 566–573.

539 18. Bordós, G.; Urbányi, B.; Micsinai, A.; Kriszt, B.; Palotai, Z.; Szabó, I.; Hantosi, Z.;
540 Szoboszlay, S. Identification of microplastics in fish ponds and natural freshwater
541 environments of the Carpathian basin, Europe. *Chemosphere* **2019**, *216*, 110–116.

542 19. Slootmaekers, B.; Catarci Carteny, C.; Belpaire, C.; Saverwyns, S.; Fremout, W.; Blust, R.;
543 Bervoets, L. Microplastic contamination in gudgeons (*Gobio gobio*) from Flemish rivers
544 (Belgium). *Environ. Pollut.* **2019**, *244*, 675–684.

545 20. Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation
546 of plastic debris in global environments. *Philos. Trans. R. Soc. B Biol. Sci.* **2009**, *364*, 1985–
547 1998.

548 21. Bergmann, M.; Gutow, L.; Klages, M. *Marine anthropogenic litter*; 2015; ISBN
549 9783319165103.

550 22. Wright, S.L.; Rowe, D.; Thompson, R.C.; Galloway, T.S. Microplastic ingestion decreases
551 energy reserves in marine worms. *Curr. Biol.* **2013**, *23*, R1031–R1033.

552 23. Lithner, D.; Damberg, J.; Dave, G.; Larsson, Å. Leachates from plastic consumer products –
553 Screening for toxicity with *Daphnia magna*. *Chemosphere* **2009**, *74*, 1195–1200.

554 24. Engler, R.E. Chemicals in the Ocean. *Environ. Sci. Technol.* **2012**, *46*, 302–315.

555 25. Endo, S.; Yuyama, M.; Takada, H. Desorption kinetics of hydrophobic organic contaminants
556 from marine plastic pellets. *Mar. Pollut. Bull.* **2013**, *74*, 125–131.

557 26. Zuo, Y.; Zhu, Z. Simultaneous identification and quantification of 4-cumylphenol, 2,4-bis-
558 (dimethylbenzyl)phenol and bisphenol A in prawn *Macrobrachium rosenbergii*.
559 *Chemosphere* **2014**, *107*, 447–453.

560 27. Pahigian, J.M.; Zuo, Y. Occurrence, endocrine-related bioeffects and fate of bisphenol A
561 chemical degradation intermediates and impurities: A review. *Chemosphere* **2018**, *207*, 469–
562 480.

563 28. Rios, L.M.; Jones, P.R.; Moore, C.; Narayan, U. V. Quantitation of persistent organic
564 pollutants adsorbed on plastic debris from the Northern Pacific Gyre’s “eastern garbage
565 patch.” *J. Environ. Monit.* **2010**, *12*, 2226–2236.

566 29. Li, J.; Liu, H.; Paul Chen, J. Microplastics in freshwater systems: A review on occurrence,
567 environmental effects, and methods for microplastics detection. *Water Res.* **2018**, *137*, 362–
568 374.

569 30. Ashton, K.; Holmes, L.; Turner, A. Association of metals with plastic production pellets in
570 the marine environment. *Mar. Pollut. Bull.* **2010**, *60*, 2050–2055.

571 31. Vedolin, M.C.; Teophilo, C.Y.S.; Turra, A.; Figueira, R.C.L. Spatial variability in the
572 concentrations of metals in beached microplastics. *Mar. Pollut. Bull.* **2018**, *129*, 487–493.

573 32. Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.;
574 Rinklebe, J.; Kim, K.-H.; Kirkham, M.B. Particulate plastics as a vector for toxic trace-
575 element uptake by aquatic and terrestrial organisms and human health risk. *Environ. Int.*
576 **2019**, *131*, 104937.

577 33. Gigault, J.; Halle, A. ter; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; El Hadri, H.;
578 Grassl, B.; Reynaud, S. Current opinion: What is a nanoplastic? *Environ. Pollut.* **2018**, *235*,
579 1030–1034.

580 34. Wang, L.; Wu, W.M.; Bolan, N.S.; Tsang, D.C.W.; Li, Y.; Qin, M.; Hou, D. Environmental
581 fate, toxicity and risk management strategies of nanoplastics in the environment: Current
582 status and future perspectives. *J. Hazard. Mater.* **2021**, *401*, 123415.

583 35. Carpenter, E.J.; Smith, K.L. Plastics on the Sargasso Sea Surface. *Science (80-.)* **1972**, *175*,
584 1240–1241.

585 36. Frost, A.; Cullen, M. Marine debris on northern New South Wales beaches (Australia):
586 Sources and the role of beach usage. *Mar. Pollut. Bull.* **1997**, *34*, 348–352.

587 37. Whiting, S.D. Types and sources of marine debris in Fog Bay, northern Australia. *Mar.*
588 *Pollut. Bull.* **1998**, *36*, 904–910.

589 38. Debrot, A.O.; Tiel, A.B.; Bradshaw, J.E. Beach debris in Curacao. *Mar. Pollut. Bull.* **1999**,
590 *38*, 795–801.

591 39. Kusui, T.; Noda, M. International survey on the distribution of stranded and buried litter on
592 beaches along the Sea of Japan. *Mar. Pollut. Bull.* **2003**, *47*, 175–179.

593 40. Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic
 594 contamination in freshwater environments: A review, focusing on interactions with
 595 sediments and benthic organisms. *Environ. - MDPI* **2020**, *7*.

596 41. Hengstmann, E.; Fischer, E.K. Anthropogenic litter in freshwater environments – Study on
 597 lake beaches evaluating marine guidelines and aerial imaging. *Environ. Res.* **2020**, *189*.

598 42. Leiser, R.; Wu, G.; Neu, T.R.; Wendt-potthoff, K. Biofouling , metal sorption and
 599 aggregation are related to sinking of microplastics in a strati fi ed reservoir. *Water Res.* **2020**,
 600 *176*, 115748.

601 43. Nava, V.; Leoni, B. A critical review of interactions between microplastics, microalgae and
 602 aquatic ecosystem function. *Water Res.* **2020**, 116476.

603 44. Zalasiewicz, J.; Waters, C.N.; Ivar do Sul, J.A.; Corcoran, P.L.; Barnosky, A.D.; Cearreta,
 604 A.; Edgeworth, M.; Gałuszka, A.; Jeandel, C.; Leinfelder, R.; et al. The geological cycle of
 605 plastics and their use as a stratigraphic indicator of the Anthropocene. *Anthropocene* **2016**,
 606 *13*, 4–17.

607 45. Cózar, A.; Echevarría, F.; González-gordillo, J.I.; Irigoien, X.; Úbeda, B. Plastic debris in the
 608 open ocean. **2014**, 17–19.

609 46. Kowalski, N.; Reichardt, A.M.; Waniek, J.J. Sinking rates of microplastics and potential
 610 implications of their alteration by physical, biological, and chemical factors. *Mar. Pollut.
 611 Bull.* **2016**, *109*, 310–319.

612 47. Morét-Ferguson, S.; Law, K.L.; Proskurowski, G.; Murphy, E.K.; Peacock, E.E.; Reddy,

613 C.M. The size, mass, and composition of plastic debris in the western North Atlantic Ocean.

614 *Mar. Pollut. Bull.* **2010**, *60*, 1873–1878.

615 48. Binda, G.; Pozzi, A.; Livio, F.; Piasini, P.; Zhang, C. Anomalously high concentration of Ni

616 as sulphide phase in sediment and in water of a mountain catchment with serpentinite

617 bedrock. *J. Geochemical Explor.* **2018**, *190*, 58–68.

618 49. Binda, G.; Pozzi, A.; Livio, F. An integrated interdisciplinary approach to evaluate

619 potentially toxic element sources in a mountainous watershed. *Environ. Geochem. Health*

620 **2020**, *42*, 1255–1272.

621 50. Zhang, G.; Bai, J.; Xiao, R.; Zhao, Q.; Jia, J.; Cui, B.; Liu, X. Heavy metal fractions and

622 ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of

623 the Pearl River Estuary, China. *Chemosphere* **2017**, *184*, 278–288.

624 51. Galgani, F.; Ellerbrake, K.; Fries, E.; Goreux, C. Marine pollution: Let us not forget beach

625 sand. *Environ. Sci. Eur.* **2011**, *23*, 40.

626 52. Underwood, A.J.; Chapman, M.G.; Browne, M.A. Some problems and practicalities in

627 design and interpretation of samples of microplastic waste. *Anal. Methods* **2017**, *9*, 1332–

628 1345.

629 53. Coppock, R.L.; Cole, M.; Lindeque, P.K.; Queirós, A.M.; Galloway, T.S. A small-scale,

630 portable method for extracting microplastics from marine sediments. *Environ. Pollut.* **2017**,

631 *230*, 829–837.

632 54. Ivar do Sul, J.A.; Spengler, Å.; Costa, M.F. Here, there and everywhere. Small plastic

633 fragments and pellets on beaches of Fernando de Noronha (Equatorial Western Atlantic).
634 *Mar. Pollut. Bull.* **2009**, *58*, 1236–1238.

635 55. Imhof, H.K.; Ivleva, N.P.; Schmid, J.; Niessner, R.; Laforsch, C. Contamination of beach
636 sediments of a subalpine lake with microplastic particles. *Curr. Biol.* **2013**, *23*, R867–R868.

637 56. Fischer, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and
638 lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).
639 *Environ. Pollut.* **2016**, *213*, 648–657.

640 57. Horton, A.A.; Svendsen, C.; Williams, R.J.; Spurgeon, D.J.; Lahive, E. Large microplastic
641 particles in sediments of tributaries of the River Thames , UK – Abundance , sources and
642 methods for effective quantification. *MPB* **2017**, *114*, 218–226.

643 58. Palombini, F.L.; Demori, R.; Cidade, M.K.; Kindlein, W.; de Jacques, J.J. Occurrence and
644 recovery of small-sized plastic debris from a Brazilian beach: characterization, recycling, and
645 mechanical analysis. *Environ. Sci. Pollut. Res.* **2018**, *25*, 26218–26227.

646 59. Korez, Š.; Gutow, L.; Saborowski, R. Microplastics at the strandlines of Slovenian beaches.
647 *Mar. Pollut. Bull.* **2019**, *145*, 334–342.

648 60. Wang, J.; Wang, M.; Ru, S.; Liu, X. High levels of microplastic pollution in the sediments
649 and benthic organisms of the South Yellow Sea, China. *Sci. Total Environ.* **2019**, *651*, 1661–
650 1669.

651 61. Zhang, D.; Liu, X.; Huang, W.; Li, J.; Wang, C.; Zhang, D.; Zhang, C. Microplastic pollution
652 in deep-sea sediments and organisms of the Western Pacific Ocean. *Environ. Pollut.* **2020**,

653 259, 113948.

654 62. Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and
655 detection of microplastics in water and sediment: A critical review. *TrAC - Trends Anal.*
656 *Chem.* **2019**, *110*, 150–159.

657 63. Abu-Hilal, A.H.; Al-Najjar, T.H. Plastic pellets on the beaches of the Northern Gulf of
658 Aqaba, Red Sea. *Aquat. Ecosyst. Heal. Manag.* **2009**, *12*, 461–470.

659 64. Browne, M.A.; Galloway, T.S.; Thompson, R.C. Spatial patterns of plastic debris along
660 estuarine shorelines. *Environ. Sci. Technol.* **2010**, *44*, 3404–3409.

661 65. Aldridge, D.C. Microplastics in freshwater systems : A review of the emerging threats ,
662 identification of knowledge gaps and prioritisation of research needs ScienceDirect
663 Microplastics in freshwater systems : A review of the emerging threats , identification of
664 knowled. **2015**.

665 66. Miller, M.E.; Kroon, F.J.; Motti, C.A. Recovering microplastics from marine samples: A
666 review of current practices. *Mar. Pollut. Bull.* **2017**, *123*, 6–18.

667 67. Wilson, S.P.; Verlis, K.M. The ugly face of tourism: Marine debris pollution linked to
668 visitation in the southern Great Barrier Reef, Australia. *Mar. Pollut. Bull.* **2017**, *117*, 239–
669 246.

670 68. Woodall, L.C.; Gwinnett, C.; Packer, M.; Thompson, R.C.; Robinson, L.F.; Paterson, G.L.J.
671 Using a forensic science approach to minimize environmental contamination and to identify
672 microfibres in marine sediments. *Mar. Pollut. Bull.* **2015**, *95*, 40–46.

673 69. Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic Pollution in
674 Table Salts from China. *Environ. Sci. Technol.* **2015**, *49*, 13622–13627.

675 70. Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine
676 environment: A review of the methods used for identification and quantification. *Environ.*
677 *Sci. Technol.* **2012**, *46*, 3060–3075.

678 71. Klein, S. Microplastics in Freshwater Systems : Analysis , Occurrence , and Sorption of
679 Organic Contaminants, 2015.

680 72. Zhang, S.; Wang, J.; Liu, X.; Qu, F.; Wang, X.; Wang, X.; Li, Y.; Sun, Y. Microplastics in
681 the environment: A review of analytical methods, distribution, and biological effects. *TrAC -*
682 *Trends Anal. Chem.* **2019**, *111*, 62–72.

683 73. Möller, J.N.; Löder, M.G.J.; Laforsch, C. Finding Microplastics in Soils: A Review of
684 Analytical Methods. *Environ. Sci. Technol.* **2020**, *54*, 2078–2090.

685 74. Silva, A.B.; Bastos, A.S.; Justino, C.I.L.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T.A.P.
686 Microplastics in the environment: Challenges in analytical chemistry - A review. *Anal. Chim.*
687 *Acta* **2018**, *1017*, 1–19.

688 75. Hanvey, J.S.; Lewis, P.J.; Lavers, J.L.; Crosbie, N.D.; Pozo, K.; Clarke, B.O. A review of
689 analytical techniques for quantifying microplastics in sediments. *Anal. Methods* **2017**, *9*,
690 1369–1383.

691 76. Lusher, A.L.; Welden, N.A.; Sobral, P.; Cole, M. Sampling, isolating and identifying
692 microplastics ingested by fish and invertebrates. *Anal. Methods* **2017**, *9*, 1346–1360.

693 77. Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C.R. Microplastics
694 in sediments: A review of techniques, occurrence and effects. *Mar. Environ. Res.* **2015**, *111*,
695 5–17.

696 78. Qiu, Q.; Tan, Z.; Wang, J.; Peng, J.; Li, M.; Zhan, Z. Extraction, enumeration and
697 identification methods for monitoring microplastics in the environment. *Estuar. Coast. Shelf
698 Sci.* **2016**, *176*, 102–109.

699 79. Cashman, M.A.; Ho, K.T.; Boving, T.B.; Russo, S.; Robinson, S.; Burgess, R.M.
700 Comparison of microplastic isolation and extraction procedures from marine sediments. *Mar.
701 Pollut. Bull.* **2020**, *159*, 111507.

702 80. Adomat, Y.; Grischek, T. Sampling and processing methods of microplastics in river
703 sediments - A review. *Sci. Total Environ.* **2021**, *758*, 143691.

704 81. Nor, F. Small plastic particles in Coastal Swedish waters . KIMO Sweden. *Small* **2007**, 1–11.

705 82. Corcoran, P.L.; Biesinger, M.C.; Grifi, M. Plastics and beaches: A degrading relationship.
706 *Mar. Pollut. Bull.* **2009**, *58*, 80–84.

707 83. Zurcher, N. Small plastic debris on beaches in Hong Kong : an initial investigation . *Environ.
708 Manage.* **2009**, *75*.

709 84. Carson, H.S.; Colbert, S.L.; Kaylor, M.J.; McDermid, K.J. Small plastic debris changes
710 water movement and heat transfer through beach sediments. *Mar. Pollut. Bull.* **2011**, *62*,
711 1708–1713.

712 85. Claessens, M.; Meester, S. De; Landuyt, L. Van; Clerck, K. De; Janssen, C.R. Occurrence
 713 and distribution of microplastics in marine sediments along the Belgian coast. *Mar. Pollut. Bull.* **2011**, *62*, 2199–2204.

714

715 86. Martins, J.; Sobral, P. Plastic marine debris on the Portuguese coastline: A matter of size?
 716 *Mar. Pollut. Bull.* **2011**, *62*, 2649–2653.

717 87. Imhof, H.K.; Schmid, J.; Niessner, R.; Ivleva, N.P.; Laforsch, C. OCEANOGRAPHY :
 718 METHODS A novel , highly efficient method for the separation and quantification of plastic
 719 particles in sediments of aquatic. **2012**, *524*–537.

720 88. Liebezeit, G.; Dubaish, F. Microplastics in beaches of the East Frisian Islands Spiekeroog
 721 and Kachelotplate. *Bull. Environ. Contam. Toxicol.* **2012**, *89*, 213–217.

722 89. Vianello, A.; Boldrin, A.; Guerriero, P.; Moschino, V.; Rella, R.; Sturaro, A.; Da Ros, L.
 723 Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on
 724 occurrence, spatial patterns and identification. *Estuar. Coast. Shelf Sci.* **2013**, *130*, 54–61.

725 90. Baztan, J.; Carrasco, A.; Chouinard, O.; Cleaud, M.; Gabaldon, J.E.; Huck, T.; Jaffrè, L.;
 726 Jorgensen, B.; Miguelez, A.; Paillard, C.; et al. Protected areas in the Atlantic facing the
 727 hazards of micro-plastic pollution: First diagnosis of three islands in the Canary Current.
 728 *Mar. Pollut. Bull.* **2014**, *80*, 302–311.

729 91. Mathalon, A.; Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax
 730 Harbor, Nova Scotia. *Mar. Pollut. Bull.* **2014**, *81*, 69–79.

731 92. Stolte, A.; Forster, S.; Gerdts, G.; Schubert, H. Microplastic concentrations in beach

732 sediments along the German Baltic coast. *Mar. Pollut. Bull.* **2015**, *99*, 216–229.

733 93. Leslie, H.A.A.; Brandsma, S.H.H.; van Velzen, M.J.M.J.M.; Vethaak, A.D.D. Microplastics
734 en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater
735 treatment plants, North Sea sediments and biota. *Environ. Int.* **2017**, *101*, 133–142.

736 94. Quinn, B.; Murphy, F.; Ewins, C. Validation of density separation for the rapid recovery of
737 microplastics from sediment. *Anal. Methods* **2017**, *9*, 1491–1498.

738 95. Sánchez-Nieva, J.; Perales, J.A.; González-Leal, J.M.; Rojo-Nieto, E. A new analytical
739 technique for the extraction and quantification of microplastics in marine sediments focused
740 on easy implementation and repeatability. *Anal. Methods* **2017**, *9*, 6371–6378.

741 96. Zobkov, M.; Esiukova, E. Microplastics in Baltic bottom sediments: Quantification
742 procedures and first results. *Mar. Pollut. Bull.* **2017**, *114*, 724–732.

743 97. Lin, L.; Zuo, L.Z.; Peng, J.P.; Cai, L.Q.; Fok, L.; Yan, Y.; Li, H.X.; Xu, X.R. Occurrence
744 and distribution of microplastics in an urban river: A case study in the Pearl River along
745 Guangzhou City, China. *Sci. Total Environ.* **2018**, *644*, 375–381.

746 98. Fan, Y.; Zheng, K.; Zhu, Z.; Chen, G.; Peng, X. Distribution, sedimentary record, and
747 persistence of microplastics in the Pearl River catchment, China. *Environ. Pollut.* **2019**, *251*,
748 862–870.

749 99. Han, X.; Lu, X.; Vogt, R.D. An optimized density-based approach for extracting
750 microplastics from soil and sediment samples. *Environ. Pollut.* **2019**, *254*, 113009.

751 100. Toumi, H.; Abidli, S.; Bejaoui, M. Microplastics in freshwater environment: the first
752 evaluation in sediments from seven water streams surrounding the lagoon of Bizerte
753 (Northern Tunisia). *Environ. Sci. Pollut. Res.* **2019**, 14673–14682.

754 101. Vermeiren, P.; Muñoz, C.; Ikejima, K. Microplastic identification and quantification from
755 organic rich sediments: A validated laboratory protocol. *Environ. Pollut.* **2020**, 262.

756 102. Zhang, X.; Yu, K.; Zhang, H.; Liu, Y.; He, J.; Liu, X.; Jiang, J. A novel heating-assisted
757 density separation method for extracting microplastics from sediments. *Chemosphere* **2020**,
758 256, 127039.

759 103. Zhang, L.; Liu, J.; Xie, Y.; Zhong, S.; Yang, B.; Lu, D.; Zhong, Q. Distribution of
760 microplastics in surface water and sediments of Qin river in Beibu Gulf, China. *Sci. Total
761 Environ.* **2020**, 708, 135176.

762 104. Rivoira, L.; Castiglioni, M.; Rodrigues, S.M.; Freitas, V.; Bruzzoniti, M.C.; Ramos, S.;
763 Almeida, C.M.R. Microplastic in marine environment: reworking and optimisation of two
764 analytical protocols for the extraction of microplastics from sediments and oysters. *MethodsX*
765 **2020**, 7, 101116.

766 105. Claessens, M.; Cauwenberghes, L. Van; Vandegehuchte, M.B.; Janssen, C.R.; Van
767 Cauwenberghes, L.; Vandegehuchte, M.B.; Janssen, C.R. New techniques for the detection of
768 microplastics in sediments and field collected organisms. *Mar. Pollut. Bull.* **2013**, 70, 227–
769 233.

770 106. Collicutt, B.; Juanes, F.; Dudas, S.E. Microplastics in juvenile Chinook salmon and their
771 nearshore environments on the east coast of Vancouver Island. *Environ. Pollut.* **2019**, 244,

772 135–142.

773 107. Dekiff, J.H.; Remy, D.; Klasmeier, J.; Fries, E. Occurrence and spatial distribution of
774 microplastics in sediments from Norderney. *Environ. Pollut.* **2014**, *186*, 248–256.

775 108. Nuelle, M.; Dekiff, J.H.; Remy, D.; Fries, E. A new analytical approach for monitoring
776 microplastics in marine sediments. *Environ. Pollut.* **2014**, *184*, 161–169.

777 109. Crew, A.; Gregory-Eaves, I.; Ricciardi, A. Distribution, abundance, and diversity of
778 microplastics in the upper St. Lawrence River. *Environ. Pollut.* **2020**, *260*, 113994.

779 110. Mani, T.; Frehland, S.; Kalberer, A.; Burkhardt-Holm, P. Using castor oil to separate
780 microplastics from four different environmental matrices. *Anal. Methods* **2019**, *11*, 1788–
781 1794.

782 111. Crichton, E.M.; Noël, M.; Gies, E.A.; Ross, P.S. A novel, density-independent and FTIR-
783 compatible approach for the rapid extraction of microplastics from aquatic sediments. *Anal.*
784 *Methods* **2017**, *9*, 1419–1428.

785 112. Zhu, X. Optimization of elutriation device for filtration of microplastic particles from
786 sediment. *Mar. Pollut. Bull.* **2015**, *92*, 69–72.

787 113. Felsing, S.; Kochleus, C.; Buchinger, S.; Brennholt, N.; Stock, F.; Reifferscheid, G. A new
788 approach in separating microplastics from environmental samples based on their electrostatic
789 behavior. *Environ. Pollut.* **2018**, *234*, 20–28.

790 114. Castelvetro, V.; Corti, A.; Bianchi, S.; Ceccarini, A.; Manariti, A.; Vinciguerra, V.

791 Quantification of poly(ethylene terephthalate) micro- and nanoparticle contaminants in
792 marine sediments and other environmental matrices. *J. Hazard. Mater.* **2020**, 385, 121517.

793 115. Müller, A.; Goedecke, C.; Eisentraut, P.; Piechotta, C.; Braun, U. Microplastic analysis using
794 chemical extraction followed by LC-UV analysis: a straightforward approach to determine
795 PET content in environmental samples. *Environ. Sci. Eur.* **2020**, 32.

796 116. Hermsen, E.; Mintenig, S.M.; Besseling, E.; Koelmans, A.A. Quality Criteria for the
797 Analysis of Microplastic in Biota Samples: A Critical Review. *Environ. Sci. Technol.* **2018**,
798 52, 10230–10240.

799 117. Zobkov, M.B.; Esiukova, E.E. Evaluation of the Munich Plastic Sediment Separator
800 efficiency in extraction of microplastics from natural marine bottom sediments. *Limnol.*
801 *Oceanogr. Methods* **2017**, 15, 967–978.

802 118. TRASK, P.D. Organic Content of Recent Marine Sediments. *Recent Mar. Sediments* **1955**,
803 428–453.

804 119. Prata, J.C.; da Costa, J.P.; Girão, A. V.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Identifying
805 a quick and efficient method of removing organic matter without damaging microplastic
806 samples. *Sci. Total Environ.* **2019**, 686, 131–139.

807 120. Tenzer, R.; Gladkikh, V. Assessment of density variations of marine sediments with ocean
808 and sediment depths. *Sci. World J.* **2014**, 2014.

809 121. Rocha-Santos, T.; Duarte, A.C. A critical overview of the analytical approaches to the
810 occurrence, the fate and the behavior of microplastics in the environment. *TrAC - Trends*

811 122. Li, Q.; Wu, J.; Zhao, X.; Gu, X.; Ji, R. Separation and identification of microplastics from
812 soil and sewage sludge. *Environ. Pollut.* **2019**, *254*, 113076.

813

814 123. Yao, P.; Zhou, B.; Lu, Y.H.; Yin, Y.; Zong, Y.Q.; Chen, M. Te; O'Donnell, Z. A review of
815 microplastics in sediments: Spatial and temporal occurrences, biological effects, and analytic
816 methods. *Quat. Int.* **2019**, *519*, 274–281.

817 124. Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting
818 Microplastics from Complex, Organic-Rich, Environmental Matrices. *Environ. Sci. Technol.*
819 **2018**, *52*, 7409–7417.

820 125. Stock, F.; Kochleus, C.; Bänsch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G. Sampling
821 techniques and preparation methods for microplastic analyses in the aquatic environment – A
822 review. *TrAC - Trends Anal. Chem.* **2019**, *113*, 84–92.

823 126. Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in
824 freshwater and terrestrial environments: Evaluating the current understanding to identify the
825 knowledge gaps and future research priorities. *Sci. Total Environ.* **2017**, *586*, 127–141.

826 127. Zhu, X. Optimization of elutriation device for filtration of microplastic particles from
827 sediment. *Mar. Pollut. Bull.* **2015**, *92*, 69–72.

828 128. Scopetani, C.; Chelazzi, D.; Mikola, J.; Leiniö, V.; Heikkinen, R.; Cincinelli, A.; Pellinen, J.
829 Olive oil-based method for the extraction, quantification and identification of microplastics
830 in soil and compost samples. *Sci. Total Environ.* **2020**, *733*.

831 129. Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Intercomparison study on commonly
832 used methods to determine microplastics in wastewater and sludge samples. *Environ. Sci.
833 Pollut. Res.* **2019**, *26*, 12109–12122.

834 130. Fuller, S.; Gautam, A. A Procedure for Measuring Microplastics using Pressurized Fluid
835 Extraction. *Environ. Sci. Technol.* **2016**, *50*, 5774–5780.

836 131. Corti, A.; Vinciguerra, V.; Iannilli, V.; Pietrelli, L.; Manariti, A.; Bianchi, S.; Petri, A.;
837 Cifelli, M.; Domenici, V.; Castelvetro, V. Thorough multianalytical characterization and
838 quantification of micro-and nanoplastics from bracciano lake's sediments. *Sustain.* **2020**, *12*,
839 1–19.

840 132. Cadiou, J.F.; Gerigny, O.; Koren; Zeri, C.; Kaberi, H.; Alomar, C.; Panti, C.; Fossi, M.C.;
841 Adamopoulou, A.; Digka, N.; et al. Lessons learned from an intercalibration exercise on the
842 quantification and characterisation of microplastic particles in sediment and water samples.
843 *Mar. Pollut. Bull.* **2020**, *154*, 111097.

844 133. Muraoka, S.; Lin, W.; Chen, M.; Hersh, S.W.; Emili, A.; Xia, W.; Ikezu, T. Assessment of
845 separation methods for extracellular vesicles from human and mouse brain tissues and human
846 cerebrospinal fluids. *Methods* **2020**, *177*, 35–49.

847 134. Abashina, T.; Vainshtein, M.; Korpela, S.; Korpela, T. Separation of cells in density
848 gradients with temporary solidification of the gradient: Application to Escherichia coli forms
849 obtained by microwave treatment of pure cultures. *J. Microbiol. Methods* **2018**, *153*, 45–47.

850 135. Galmarini, M. V.; Baeza, R.; Sanchez, V.; Zamora, M.C.; Chirife, J. Comparison of the
851 viscosity of trehalose and sucrose solutions at various temperatures: Effect of guar gum

852 addition. *LWT - Food Sci. Technol.* **2011**, *44*, 186–190.

853

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: