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Multiple international agencies have recently raised environmental and health concerns regarding plastics in
nanoforms (nanoplastics), but there is insufficient knowledge of their properties to allow for an accurate risk as-
sessment to be conducted and any risks managed. For this reason, research into the toxicity of nanoplastics has
focused strongly on documenting their impacts on biological organisms. One scope of this review is to summarise
the recentfindings on the adverse effects on biological organisms and strategieswhich can be adopted to advance
our understanding of nanoplastic properties and their toxicity. Specifically, a mechanistic approach has already
been employed in nanotoxicology, which focuses on the cause-and-effect relationships to establish a tool that
predicts the biological impacts based on nanoparticle characteristics. Identifying the chemical and biological
bases behind the observed biological effects (such as in vitro cellular response) is a major challenge, due to the
intricate nature of nanoparticle-biological molecule complexes and an unawareness of their interaction with
other biological targets, particularly at interfacial level. An exemplary case includes protein corona formation
and ecologicalmolecule corona (eco-corona) for nanoplastics. Therefore, the second scope of this review is to dis-
cuss recent findings and importance of (for both non-plastic and plastic nanoparticles) coronae formation and
structure. Finally, we discuss the opportunities provided by model system approaches (model protein corona
and lipid bilayer) to deepen the understanding of the above-mentioned perspectives, and corroborate the find-
ings from in vitro experiments.
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1. Introduction

Plastics in nano-scale (nanoplastics) are visually less impactful than
their bulk forms or microplastics, yet, their small size makes themmore
challenging to remediate and facilitates their entry into biological sys-
tems, past innate defence mechanisms [1]. The World Health Organisa-
tion (WHO) noted that therewas a lack of evidence thatmicroplastics in
drinking water cause significant human health problems, but could not
reach a conclusion about the safety of nanoplastics due to the insuffi-
cient number of studies [2]. With increasing awareness around the
globe, the nanoplastic research field emerged in the area of environ-
mental science, investigating the origin and distribution of nanoplastics
[3–5]. There is now amajor focus on investigating the biological impacts
of nanoplastics, in linewith concerns raised inmajor reports by govern-
ment agencies [6–8]. The first part of this review reports on the updated
knowledge of the potential adverse effects of nanoplastics on biological
organisms. It also describes the current mechanistic approach taken in
the nano-toxicological field to better understand the cause-and-effect.
Second scope of the review includes the findings on corona formation,
structure, and importance of considering this to explore the underlying
mechanisms of nanoplastic toxicology. Finally, it critically discusses the
strategy that interfacial scientists use to fill in the knowledge gap and
contribute to the mechanistic approach which can also be applied to
the nanoplastic toxicology research.

Global plastic production has increased dramatically since the 1950s
[9]. Concerns regarding marine plastic pollution were first raised in the
1970s, in response to their mass production and careless disposal [10].
Today, the international production of plastics exceeds 320 million
tonnes per year and the growth in plastic manufacture is projected to
double in 20 years, in the absence of further restrictions and altering
the habit of plastic usage [11,12]. The release of plastic from landfills
into the ocean was estimated to be around 10 million metric tonnes in
2010, increasing by an order of magnitude by 2015 [13]. The excessive
spread of plastics has led to their unexpected discovery in places with
small human influence, including the Mariana Trench, Antarctica and
the Arizonan deserts [14–17].

The plastics released in the environment undergo dynamic chem-
ical and physical changes; photo-oxidation, slow biodegradation,
and physical weathering can reduce their size range to the micro-
plastics, and eventually, the nanoplastics, boosting their accumula-
tion in the environment [18–21]. Increasingly, researchers have
Fig. 1.Number of journal articles published per year containing the keyword “microplastics” (le
(www.webofknowledge.com, data accessed on 15 Sep 2020).
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realised the impact of plastic size on environmental accumulation
and potential toxicity to living organisms [17,22–25]. Although mul-
tiple studies have shown the potential toxicity of microplastics
[23,25,26], few studies have compared the impact of nanoplastics
to microplastics (Fig. 1). Since the characterisation of plastic parti-
cles in the environment is only emerging, a rigorous definition of
the term "nanoplastic" is yet to be established [27]. By extrapolating
the definition of non-plastic nanoparticles [28], some authors
have defined the size of nanoplastics to be in the range of 1 nm to
100 nm [29,30]. Many authors set the upper size to 1000 nm
[31–36], following the meaning of the prefix “nano”. The latter sys-
tem of nomenclature (1-1000 nm) is followed in this review.

Nanoplastic pollution is thought to occur from the careless release of
waste products (primary micro/nano plastics), including pigments,
cleansing scrubs, cosmetic products, and textile fibres into aquatic envi-
ronments – nanoplastics emitted as a by-product of 3D printing are a
new growing concern, considering the popularity of 3D printers [5,22].
Secondary micro/nanoplastics, which result from the degradation of
bulk plastics, are also thought to be the source of micro/nano plastics
in the environment [10–13,26–28]. For instance, the fragmentation of
polystyrene down to the nanoscale can occur within four weeks inside
a weathering chamber [21]. A recent study [49] also highlighted the
fact thatmicro- and nanoplastics occur bymechanicalmilling of agricul-
tural plastics. Normal wastewater treatment systems are unable to sep-
arate nanoplastic waste fromwater, allowing it to pass through to rivers
and oceans [37].

In response to this growing environmental threat, a number of
studies have been conducted in recent years. The German Federal In-
stitute (GFI), in 2016, requested the European Food Safety Authority
(EFSA) to critically assess the presence of microplastics and
nanoplastics in seafood [38]. Despite the large number of reports
on microplastics, no information existed about nanoplastics found
in commercial goods [39–44]. More recently, Wang et al. [45]
reviewed the micro- and nanoplastics found in food chains and
their implications for human health. However, few of these studies
directly observed nanoplastics in the environment and in the con-
sumer goods. The scarcity of reporting on nanoplastics arises, in a
large part, from the technical and analytical challenges, e.g., the
small contrast between nanoplastics and food matrices when using
imaging techniques. The development of nanoplastic detection tech-
niques in seafood is a current challenge [38].
ft) or “nanoplastics” (right) from 2010-2019. This data was acquired fromWeb of Science
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2. Interactions with biological organisms

In comparison with their bulk analogues (bulk plastics), nano-
plastics (and nanoparticles, more generally) are uniquely elusive to bio-
logical defence systems, including barriers such as tissues, mucous, and
cell membranes [46,47]. Numerous factors (e.g., particle size, elemental
composition and surface groups) affect their likelihood of crossing bio-
logical barriers, including the nature of interactions [47–50]. Biological
entities of different levels of complexity can be affected, with examples
including biofilms [51], marine organisms [52–71], mammals [72], and
humans [73–76]. The biological impacts of nanoplastics listed in this
work are summarised in Table 1.

2.1. Nanoplastics in bacteria and biofilms

With the wide spread of the nanoplastics in the aquatic environ-
ments and abundance, bacteria have been target organisms to study.
Bacteria play important roles in essential nutrient cycles and carbon fix-
ation [77,78]. The study of the bacterial interactions with nanoplastics
(and microplastics) is also motivated by their frequent use in assessing
ecological impacts [79].

Association of nanoplastics and microplastics have been correlated
with harming the functionality of bacteria [80–82] and eco-toxicity
[81,83], although causes remain unclear. Miao et al. [81] reported the
ecotoxicity is dependent on the polystyrene plastic particle size. With
the size range tested in their study (100 nm – 9000 nm), only negligible
effects (such as generation of reactive oxygen species (ROS)) were ob-
served for large particles (500 nm and larger). In other work [83], the
surface group of nanoplastics (100 nm) showed stronger toxicity to
the biofilm compared to the ones with negatively charged surface. No-
tably, the biofilm formation was shown to be surface group dependent,
and the extent and the trend of which group showed a stronger potent
was specific to particular bacterial species. It has been known that the
positive charge is an important characteristic to target the negatively
charged bacterial membrane, as demonstrated in development of anti-
bacterial peptides [84]. However, drawing a parallel comparison may
be too simplistic with limited understanding of the mechanism. Careful
assessments at different biological complexity levels (from simple lipid
bilayer to in vivo experiments) are essential in identifying the underly-
ing causes (namely, which of nanoplastic properties are important in
causing the bacterial toxicity).

2.2. Nanoplastics in marine organisms

Adverse effects on marine organisms have been documented since
the early stages of nanoplastic research [5,85,86]. A frequently used
model organism, D. magna, demonstrated malformation of body parts
[87] and impaired reproduction [26] as a result of interactionwith poly-
styrene nanoplastics. Liu et al. [88] also showed that the adverse effects
Table 1
This table summarises the biological impacts of nanoplastics are summarised and classi-
fied by different biological organisms listed in this article.

Target biological organisms and
molecules

Biological effects References

Bacteria Enzymatic activity [81]
Toxicity [81,83]
Riboflavin secretion [80]
Metabolism [82]

Bivalves and crustaceans Phenotype deformation [68]
Fertilization and embryogenesis [89]
Development defect [59]

Fish Bioaccumulation [87,95]
Neurotoxicity [87,96]
Oxidative stress [98–100]
Altered metabolism [101,102]
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caused by polystyrene nanoplastics on D. magna persisted over
generations.

Aquatic invertebrates, such as bivalves [68,89] and crustaceans [90],
are other frequently used model organisms. Reports indicated that
exposure to functionalised polystyrene nanoplastics led to a decline in
fertilisation and embryogenesis of Pacific oysters [89] and deformed
larval phenotypes of blue mussel [68]. The toxicity on their gametes
and embryos was demonstrated (with EC50 = 4.9 μg mL−1 and
0.15 μg mL−1, respectively), although microplastics showed limited ef-
fects. Similarly, for crustaceans, developmental alteration has been
reported [59].

Fish have been common targets for studying nanoplastic toxicity, as
highlighted in recent reviews [66,91–94]. Of the biological impacts, no-
tably, bioaccumulation has been demonstrated – polystyrene (PS)
nanoplastics can propagate through a model food chain [87,95]. When
the PS nanoplastics reached the higher trophic level tested (fish), be-
havioural disorderwas observed attributing to neurotoxicity [87,96]. In-
triguingly, almost all PS nanoplastics affected the brain function of the
fish in different ways, including the cationic PS nanoplastics, which
researchers previously believed had much shorter lifetimes inside bio-
logical media [97]. As with other biological organisms, underlying
mechanisms of nanoplastic toxicity is not fully understood. However,
there has been studies [98–100] demonstrating oxidative stress has
been linked to underlying toxicitymechanisms. In addition to the toxic-
ity, studies [101,102] have also shown nanoplastics alter the nutritional
metabolism by fish.

2.3. Nanoplastics and human health

Much of the understanding around the effect of nanoplastics on
human health originates from in vitro experiments and extrapolations
from non-plastic nanotoxicology research [73–76]. Considering their
ubiquitous occurrence, three plausible routes of exposure are via:
(1) dermal absorption; (2) oral inhalation; and (3) ingestion. Through
the use of, for example, cosmetic items applied to the skin, nanoplastics
may penetrate through dermal barriers [103]. Due to the lack of exper-
imental evidence on the atmospheric distribution of nanoplastics, stud-
ies on exposure via oral inhalation remains within occupational
settings, where bulk plastics undergo mechanical and milling stress
[104,105]. Besides these, oral ingestion (likely through drinking water
and food matrices) is considered the major exposure route for humans
[106]. While this is plausible, there is yet to be a study experimentally
confirming nanoplastic uptake from dietary contamination – although
this has already been established for microplastics [104].

Following ingestion or inhalation, nanoplastics encounter mucosal
barriers. Mucosal barriers play themain role in rejecting foreign objects,
while maintaining efficient nutritional uptake. Nanoparticles (although
not specifically nanoplastics) have been shown to be absorbed through
this barrier via pinocytosis and vesicular phagocytic processes [49].
Thus far, it has been found that particles smaller than 1.0 μm have a
greater tendency to be found within lymphatic tissues and their likeli-
hood of entering the bloodstream (and ultimately, organs) is signifi-
cantly higher compared to their larger analogues [46]. In particular,
particles smaller than 100 nm circumvent biological barriers easily, as
they are misidentify as a physiological molecule by the barriers, and
make use of inherent entry mechanisms to cross them [107].

Choi et al. demonstrated the translocation of various nanoparticles
(CdSe, silica, and PS) from the lung to other parts of body, for a range
of sizes and functional groups [97]. The study found that non-cationic
nanoparticles less than 34 nm translocate from the lungs to themedias-
tinal lymph, and nanoparticles smaller than 6.0 nm disperse even more
rapidly, reaching other organs by entering the bloodstream. For gold
nanoparticles (functionalised both negatively and positively), the num-
ber of particles, sized 20nmor below, in the bloodstreamand organs in-
creased significantly when compared with particle sizes above 80 nm
[108]. Factors contributing to adverse effects.
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Following the translocation and localisation of nanoplastics in
specific parts of an organism, numerous biochemical events take
place, which may contribute towards adverse effects either singly
or in combination. Thus far, interaction with nanoplastics have re-
sulted in the following: alterations in gene expression [109,110]
and transcription factors [111]; oxidative stress [100,112]; mem-
brane damage [64]; DNA fragmentation [64]; protein modification
[113]; and cytotoxicity [114].

The high surface area of nanoparticles cause excess generation of re-
active oxygen species (ROS) [115]; in in vivo organisms (zebrafish)
[100] and in vitro human epithelial cells [112]. Typical ROS include hy-
drogen peroxide, peroxynitrite, lipid hydroperoxide, and superoxide,
which can damage cellular membranes, proteins, and DNA [116].

Reproductive impairment was a major consequence of nanoplastic
exposure in aquatic organisms [54,117]. Recent studies have shown
that polystyrene nanoplastics (100 nm and smaller) are able to interact
with chromosomes, causing aberrations [112,114]. Transcriptional re-
sponses have also been instigated following the interactions with
nanoplastics [110,111]. In spite of these documented biological re-
sponses, the underlying causes remain uncertain.
3. Predictive approach and uncovering the molecular and physical
mechanism

The nanoplastic researchhas thus far focused on assessing the in vivo
and in vitro toxicity as highlighted in this review. As with any other po-
tential toxins, the ultimate goal is to anticipate the scale and types of
hazards with the physicochemical properties of nanoplastics through
structure and activity relationships (referred “predictive model” in
Fig. 2). Accurate prediction of hazards enables to identify higher risk
nanoplastics and their effects, which allow informed decision-making
to mitigate harm. Here, we outline the scientific challenges that should
be overcome and need to be carefully considered in future research.
Specifically, we make a comparison with the progress in this field of re-
search concerning the safety of engineered nanomaterials (hereafter,
referred as the nanotoxicology).

In the late 2000s to early 2010s, the nanotoxicology field primarily
focused on identifying the toxicological profiles using standard assays
[118]. Qiu et al. [119] described that the next stage of the research was
to understand the underlying chemical mechanisms and to establish
causal relationships between the physicochemical properties of nano-
particles and the affected biochemical processes. Currently, nanoplastic
toxicology is only beginning to proceed to this stage [73]. As highlighted
by Qiu et al. [119], determining the individual contribution of each of
nanoplastics physicochemical property (e.g., particle material, shapes,
size, surface groups) is important, and these parameters need to be
explored systematically in measuring their biological impact (e.g., cyto-
toxicity, ROS generation, and cellular uptake).

Further, the nanoplastic surface enables the formation of complexes
with macromolecules present in biological fluids, creating additional
contributing factors and complicate the establishment of the causal re-
lationships [120]. The chemical identity and intrinsic properties of the
Fig. 2. A predictive model for classical toxicology. Based on the chemical identity, structure a
anticipate the physiological effects.
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particle affect the formation of these complexes (discussed more in de-
tail in 5 and 5.1), and it is these complexes that determine biochemical
processes [120]. A schematic of interconnected factors and a series of
events, nanoplastics experience is shown in Fig. 3. There is currently lit-
tle knowledge about how the individual components of protein corona
(e.g. component, shapes, protein structures, and nanoplastic/corona
complex) contribute to biological interactions, and the importance of
each property.

3.1. An important role of interface and knowledge gap

To explore the relationship between the complex of nanoplastic-
biological molecules and their biological outcome (or “disrupted
biochemical processes” in Fig. 2), the formation and structure of this
complex structure play the key role. The prediction of further interac-
tions with other biological (macro)molecules and assemblies can how-
ever be only established with interfacial understanding [120,121].

Fundamentally, the interaction of nanoparticles with biological enti-
ties, e.g., a cell membrane, can be predicted by considering colloidal the-
ories of multiple forces [121]. If the nanoparticles stay pristine on a
surface, the attractive or repulsive interaction can be described by the
well-known Derjaguin–Landau–Verwey–Overbeek (DLVO) theory
[122]. The physical implication is that the surface character of the nano-
particles themselves dominates the colloidal behaviour (e.g., shape, size,
surface charge, surface pattern). Pogodin et al. [123] expressed the sig-
nificance of such properties by demonstrating the enhanced penetra-
tion of nanoparticles with a specific surface pattern (which may
appear to be a marginal factor) through cellular membranes. However,
studies concerning the interfacial aspect, have infrequently considered
the surface alteration (i.e. corona formation) due to the biological com-
plex formation, both theoretically and experimentally.

4. Corona formation – protein and eco-molecules

The nanoparticles in biological fluid participate in the complex
formation with biological molecules. The case is best exemplified by a
protein corona [120]. Nanoplastics are not exempted from this scenario,
and experimentally demonstrated by us in the previouswork [124,125].
Because the nanoparticle’s surface properties can be altered drastically
by such a surface layer, the particle’s “biological identity” should con-
sider the full complexity of the surface structure. Both in vitro
[126,127] and model systems [128] have demonstrated that the forma-
tion of such nanoparticle/biological molecule complexes affect the bio-
logical interactions of nanoparticles.

Whenproteins participate in thenanoparticle/biomolecule complex,
a “protein corona” is formed [129]. For example, the human plasma sys-
tem is abundant in proteins such as serum albumin, immunoglobulin G
(IgG), and fibrinogen, which readily surround the surface of nanoparti-
cles [130,131]. Other proteins, such as apolipoprotein,may bemuch less
abundant in the plasma system, but have higher affinities to the nano-
particle surface [132]. These proteins can, over time, competitively ad-
sorb on the surface, displacing the already-adsorbed proteins [133]. It
ctivity relationship (SAR) predicts the affected biochemical processes, which would then



Fig. 3. A series of events nanoplastics experience in biological organism; plastic types and physicochemical properties of nanoplastics influence the further corona formation, and further
biochemical processes are determined by the nature of the nanoplastic/corona complexes.
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is important to note that abundant proteins with low affinities are not
fully replaced by the proteins with higher affinities; they are also
retained on the nanoparticle surface [133].

During this competitive adsorption process, the corona proteins
form two distinctive structures, “hard” and “soft” coronae (Fig. 4). Pro-
teins that are adsorbed tightly on the surface form the “hard” corona,
while those that are loosely bound are called “soft”. This identification
method relies on the isolation of nanoparticle/protein particulates. It
has been found that a fewproteins (e.g. human serumalbumin, apolipo-
protein, and IgG) participate in the hard corona formation in human
plasma system [134]. However, protein typing cannot distinguish be-
tween unbound proteins and soft corona, leaving the identification of
soft corona proteins to a future challenge.

The presence of protein corona may or may not extend the lifetime
of nanoparticles within biological organisms. Two classes of proteins
play a crucial role, opsonins and dysopsonins. Opsonins act as an immu-
nological barrier and are prone to cause phagocytosis due to their
surface adsorption, thereby, shortening the lifetime of the external
objects in the plasma system [136]. Major examples include
Fig. 4. Schematic of protein corona formed around a nanoparticle, depicting two types of coron
original article can be found at https://pubs.acs.org/doi/10.1021/ar500190q [135].
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immunoglobulins and their complementary proteins. Dysopsonins, on
the other hand, are known to prolong their lifetime in the bloodstream.
Albumin, the most abundant serum protein (constitutes 55% of plasma
protein), belongs to this group, and is frequently found on the surface
of the nanoparticles [132,137].

Corona formation can result in a loss of or alterations to the intrin-
sic functionality of proteins [138,139]. Proteins participating in the
hard corona, in particular, bind tightly to the nanoparticle surface,
which can facilitate partial unfolding of their secondary structure
[138]. Norde listed the thermodynamic forces driving the protein
binding and protein conformational changes on solid surfaces:
(1) electrostatic interactions between protein and solid surface;
(2) dispersion force (van der Waals interactions), weak attractive
force involving dipoles; and (3) enthalpic and entropic adjustment
via conformational change responding to protein surface dehydration
[140]. However, there are cases of stabilisation of the secondary struc-
ture upon protein corona formation [141]. There is also a case where
the functionality of a soft corona protein was reported to be affected
[139] even in the absence of structural alterations.
ae, hard and soft. The figure is adapted with permission from an ACS publication and the

https://pubs.acs.org/doi/10.1021/ar500190q
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The corona structure also provides a platform for the coronaproteins
to modify their quaternary structure to undesirable forms [142]. Linse
et al. [143] observed the enhanced formation of β2-microglobulin
oligomers, following their interaction with polymeric nanopa-
rticles. Crucially, oligomeric states can then form amyloid-like protein
aggregates, which are thought to be responsible for haemodialysis-
associated amyloidosis (specifically for β2-microglobulin) [144]. The
formation of oligomers alone can have a strong biological relevance, as
in Alzheimer-related symptoms [145]. Conversely, nanoparticles can
also inhibit the fibrillation of amyloid proteins [146]. These findings col-
lectively highlight the case-by-case nature of the influence that nano-
particles have on protein quaternary structures.

Overall, the presence of protein corona is not necessarily deleterious.
A benchmark study by Lesniak et al. [127] demonstrated a reduction in
nanoparticle cellular adhesion and uptake due to the presence of protein
corona. There were also reports that the nanoparticles with protein co-
rona (compared to bare nanoparticles) weakened cytotoxicity [147,
148], however, some report the opposite effect in vitro [149]. Since the
cellular uptake is dependent on the types of proteins in corona, caution
is advised in using the one-size-fit-all explanation for the role of protein
corona [150]. Fleischer and Payne [126] showed the uptake mechanism
is also affected by the secondary structure of the corona proteins, and
is not influenced only by protein types. Notably, the above examples pri-
marily use non-nanoplastics, and this case-by-case nature highlights the
importance of testing out different combinations of nanoplastics (of dif-
ferent composition, size, and shape) and protein types.

4.1. Eco-corona around nanoplastics

Analogous to a protein corona, any molecules in the environment
that participate in the corona structure satisfy the criteria for being an
“eco-molecule” and for the resulting structure to be an environmental
or eco-corona [151[191]] (see Fig. 5). Eco-corona formation becomes a
critical parameter in the predictive model, considering the ubiquity of
nanoplastics in the environment. However, relevant studies have only
recently appeared for microplastics [152]; few have considered this
for nanoplastic research.

Research exploring the relevance of eco-corona (or often referred as
adsorbed molecules) have targeted the molecules that are typically
used in environmental toxicity research. The scopes of these studies
are diverse and showed early evidences of; adsorption of organic pollut-
ant on nanoplastics increases mobility (of pollutant molecules’) in
terrestrial environemnts [153,154],microplastics facilitated bioaccumu-
lation of pollutant molecules [155,156], presence of eco-corona affects
the nanoplastic toxicity to fish [57], and synergetic toxicity with metal
ions [157]. It has also been hypothesised that micro and nanoplastics
could act a “Trojan horse” and transport the eco-toxic molecules to bio-
logical organisms (as seen in the case of bioaccumulation). The mecha-
nism behind should be tackled at interfacial level. As demonstratedwith
proteins [133], the corona molecules undergo competitive adsorption
and establish equilibrium with molecules in bulk solution. Same is ap-
plied for eco-corona, and therefore, the effect of eco-coronawith further
protein corona formation and chemical association becomes an impor-
tant target of the future research.

Notably, the studies so far only assumed the classes of ecological
molecules interactingwithmicro and nanoplastics for testing their eco-
logical and biological impacts. To the best knowledge, these molecules
constituting the eco-corona around micro and nanoplastics in nature
have yet to be identified, and remain a critical challenge.

5. Opportunities for the interfacial scientist

Recalling the challenges of associating biological responses to
nanomaterial properties, it is imperative for a predictive model
(Fig. 2 and 3) to understand the molecular and biological identities.
However, due to the number of contributing factors involved,
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attempts to investigate this using in vivo and in vitro systems may
impose many technical challenges. One approach is to simplify the
bio-nano interface by creating model systems. This allows a system-
atic investigation of different parameters and resolution of molecu-
lar details at the interface. This approach has been implemented in
the non-nanoplastic field, and has recently started to be adopted in
nanoplastic research also [124,125,158–160]. We outline findings
from both, non-nanoplastic and nanoplastic studies, that have fo-
cused on formation and structure of corona and its cellular interac-
tions using model cellular membrane.

5.1. Uncovering corona formation and structure

A successful analytical approach to this complex challenge would
identify the types of proteins in the hard corona in vitro and in vivo,
both in steady state and resolved over time [132]. In contrast,
model systems offer the possibility of further insight, including pro-
tein structural change, protein corona structure [124,125], and ad-
sorption behaviour [161–163]. For instance, the effect of corona
formation (with varying particle size and electrostatic interactions)
on participating protein secondary structure and binding constants
was documented using spectroscopy techniques [164]. Similarly, a
number of reports recorded a (partial) conformation change
[124,125,138,158], or stabilisation of the secondary structure [126].
Various factors are thought to contribute to this interaction; nano-
particle material, surface coating, coating density and pattern, parti-
cle size, shape, etc. To date, there is yet to be a unified theory
connecting these physicochemical properties of nanoparticles, pro-
tein types, to these experimentally observed effects.

While the model system studies enable us to explore the physi-
cal parameters of individual proteins and nanoparticles, multi-
component analysis is still a challenging task. Computational simu-
lations have provided insight into the competitive adsorptions of
proteins and nanoparticle behaviour, in multi-component systems
[133,165,166]. Vilanova et al. [133] combined coarse grain model-
ling with binding constants for human serum albumin (HSA), trans-
ferrin, and fibrinogen to silica nanoparticles, experimentally
obtained using fluorescence correlation spectroscopy. Recently,
computational modelling has been used for simulating nanoplastic
interaction with proteins, predicting the affected structure as well
as theorising the causes and effects [158].

To carefully assess the relation between nanoplastic (or nanoparti-
cle) properties and their toxicological profiles, the physicochemical
properties of the complex formed with the protein corona (sometimes
referred to as “biological identity” [134]) have to be considered [167],
along with the particle characteristics. Thus, the structural evaluation
of protein corona complexes have also been of considerable interest,
and small-angle scattering techniques have supported this [124,125,
161,168]. This method (especially when used with contrast-matching
techniques) [124,125] provides an opportunity to understand individ-
ual components of a complex system when appropriate structural
model is utilised. The structure of nanoplastic/protein corona complex
and corona protein structure (soft and hard) was only recently evalu-
ated using this technique (Fig. 6) [124,125].

It is worthwhile noting that studies have mainly documented
the interaction of nanoparticles with proteins. However, the
nanoplastic exposure in humans and other organisms would inev-
itably occur in environmental matrices which contain a molecular
cocktail and form an eco-corona. To our knowledge, few studies
have shown the significance of eco-corona [169–171]. The types
of molecules found on nanoplastics from the environment,
eco-corona structure, their influence on further protein corona
formation, and subsequent biological interactions are yet to
investigated– there is still a considerable knowledge void. We be-
lieve that the research articles introduced in this review embody
methodologies worth exploring.



Fig. 5. Comparative illustration of protein corona (top) and environmental or eco-corona (bottom) formed around a nanoparticle. Reprintedwith permission fromPulido-Reyes et al. [191]
(https://setac.onlinelibrary.wiley.com/doi/full/10.1002/etc.3924) copyright (2017) JohnWiley and Sons.
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5.2. Implications of nanoplastics and corona-complex

Ignorance about biological identities and their biological impact re-
main one of the challenges to complete the scheme of the predictive
model (Fig. 2 and 3). Chiefly, the question of how and which compo-
nents of nanoplastic/corona complex affects further interactions with
biological entities such as cells, are largely unaddressed. Contributory
factors could include nanoplastic material, protein type found in soft
and hard corona, morphology of nanoplastic/corona complex, structure
of participating proteins (from secondary to quaternary). These factors
can be tested by in vitro experiments, which investigate detailed cellular
interactions and their responses in the form of cellular uptake,
localisation, cytotoxicity, oxidative stress, chromosomal aberration, etc.
While these experiments yield insightful information, the mechanism
Fig. 6. The structure of polystyrene nanoplastic complex with soft and hard protein corona, mod
[125] with permission from the AIP publishing.
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relating to the interactions with individual components remain open
to question. In the past, model systems such as lipid bilayers have dem-
onstrated their use for studying interactions with other biologically ac-
tivemolecules such as proteins, peptides and drug candidatemolecules,
as well as the lipid bilayer undergone oxidative stress [172–176]. Fur-
thermore, the sparsely-tethered lipid bilayer in particular has shown
to be a better mimicry of the natural cellular membrane – effectively
being used to study the above mentioned aspects [172,176–180].
More recently, a computational approach provided a detailed under-
standing of the interaction between lipid bilayer and nanoplastics
(Fig. 7).

A model lipid bilayer has also been applied to study the cellular
interactions with nanoparticle systems [181–186]. These studies de-
monstrate that the aforementioned physicochemical properties of
elled based on the small-angle neutron scattering curves. The figurewas adapted from ref

https://setac.onlinelibrary.wiley.com/doi/full/10.1002/etc.3924


Fig. 7. Simulated interactions between model phospholipid bilayer and polyethylene nanoparticles of different shapes. The figure was reproduced from Ref [159] with permission from
European Chemical Society Publishing.
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nanoparticles can affect the structural integrity andmembrane fluid-
ity, both of which are vital in maintaining cellular functions. In some
cases, these bilayer properties were sensitive to surface patterning of
nanoparticles [123,187]. While many studies focused on bare nano-
particles, few have shed light on the nanoparticle/corona complex
[188], in fact, the number of studies are even more limited than for
nanoplastic/corona complex [128].

Proteins participating in the corona formation can drastically
change cellular interactions (compared to nanoparticles), although
the cause is open for debate – whether it is attributed to protein
structural change, formation of new morphologies (nanoparticle/
corona complex), or a combination of the two. As discussed, the
participating corona proteins can lose their structural integrity
which may disrupt the lipid bilayer upon contact (while their na-
tive form is membrane-inert) [189]. To complicate matters, it is
also affected by the nanoparticle physicochemical properties and
the protein types, all of which need to be carefully assessed. A
lack of evidence and variables explored (particularly with nano-
plastics) prevents further assessment. Studies found in the li-
terature have been limited to using polystyrene as a model
nanoplastic and commonly found proteins (e.g. serum albumin
and lysozyme). Evidence suggests that less abundant proteins con-
stitute the protein corona [132], and types of corona proteins (or
the combination of which) affect their cellular response [190].
Based on the methodologies employed by the studies highlighted
here, future studies should consider the usage of other polymer
material, more specialised proteins, and importantly, other kinds
of molecules anticipated to constitute eco-corona (e.g. organic pol-
lutant molecules) for closer relevance.

6. Summary and future outlook

The present work reviewed recent findings relating to the po-
tential impact of nanoplastics on biological organisms (i.e. micro-
bial, aquatic, and implications for humans). Collectively, these
8

studies support the potential of nanoplastics to disrupt the ecolog-
ical function of biofilms, cause adverse effects in aquatic organisms,
and to bioaccumulate. There is no evidence yet that shows major
nanoplastic uptake by humans, however this should not be consid-
ered final. The potential effects for humans are largely discussed on
the basis of in vitro experiments and theories extrapolated from
non-plastic nanoparticles. We highlight an approach taken in
nanotoxicology, that attempts to establish a link between physico-
chemical properties of nanoparticles and their impact (e.g. ph-
ysiological effects) on the basis of chemistry and biology. This
mechanistic approach allows for future decision-making to miti-
gate the harm caused by nanoplastics as it can be tailored to the
level of risk predicted. We highlight the main gaps in the
nanoplastic field: 1. Lack of understanding behind the influence
of physicochemical properties (plastic types, size, shape, etc) of
nanoplastics on corona formation (both protein and eco-corona),
2. The impact of eco-corona on protein corona formation, 3. The bi-
ological impact of eco-corona and protein corona around nano-
plastics (from cellular to model organisms), 4. Identification of
molecules participating in eco-corona in nature. While these ques-
tions can be addressed in part via in vitro experiments, molecular
details are difficult to obtain. These are important parameters
which can attribute the observed biological consequences to the
nanoplastic (and nanoplastic/corona complex) properties. The
methodologies employed in interface science are particularly use-
ful in addressing these questions, from understanding the forma-
tion and structure of protein corona in nanoplastic property and a
protein-type-dependent manner to resolving the lipid bilayer in-
teraction with molecular resolution. Nanoplastic-specific studies
attempting to explore these points are scarce and leaves significant
opportunities for future research.
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