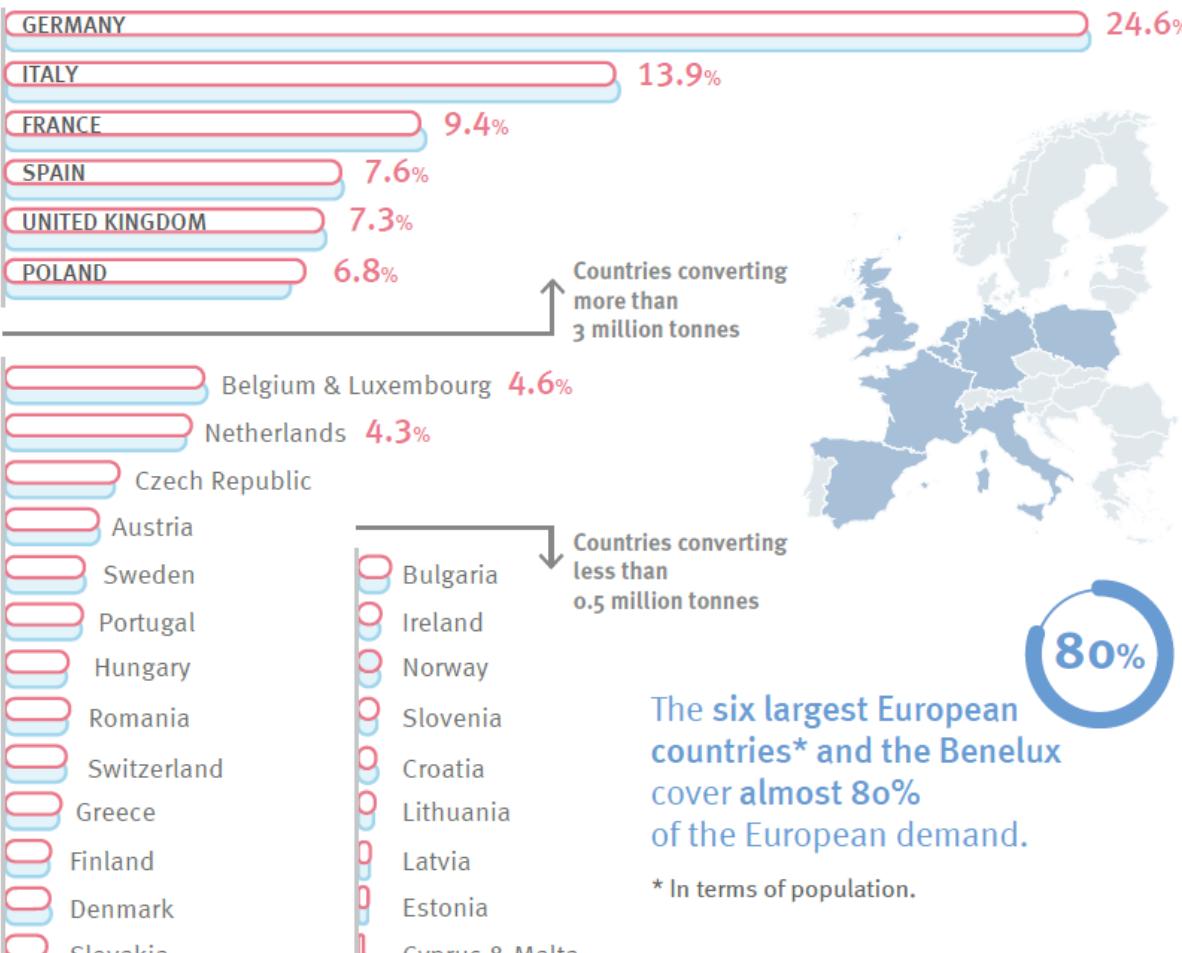


Polymers identification: a critical step for plastics recycling

Ana C. Marques, DEQ, IST-UL (2021)

UNIVERSITY OF LISBON
INTERDISCIPLINARY STUDIES
ON SUSTAINABLE ENVIRONMENT AND SEAS

ulisses.ulisboa.pt


1. Plastics demand and plastics packaging recycling rate, by country (Europe)
2. Types of polymers
3. Non-instrumental identification tests for polymers
4. Mechanical recycling process
5. Plastic recyclates: where are they used
6. Glossary

51.2 Mt

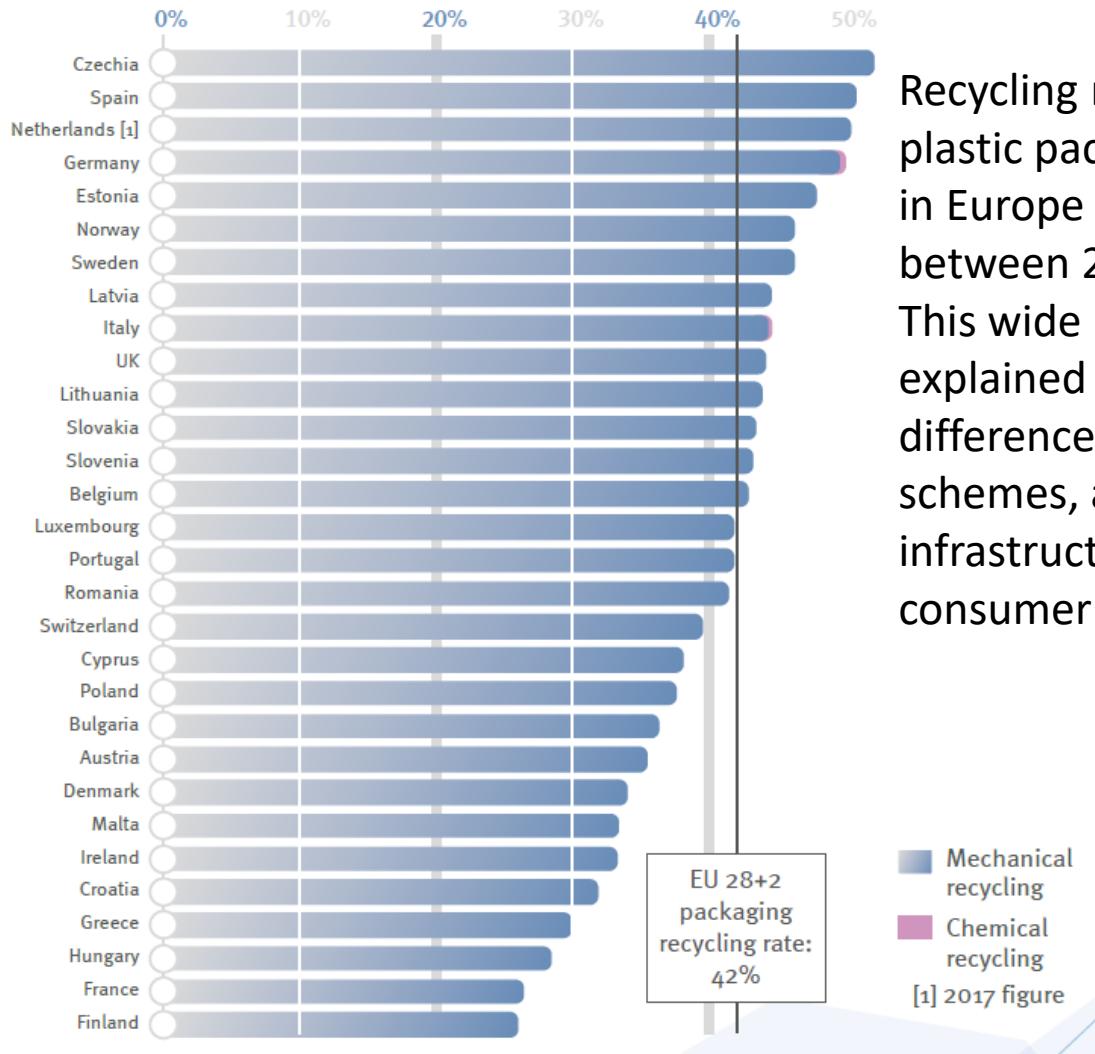
European converters demand
in 2018 (EU28+NO/CH)

Plastics demand by country

2018 2017

The six largest European countries* and the Benelux cover almost 80% of the European demand.

* In terms of population.


275,000 tonnes of plastic are used annually in the UK, for example. This is equivalent to 15 million bottles per day!

Plastic waste issues have been extensively noticed by the media, due to the large quantities that have been reaching the world's oceans.

Once in the ocean, plastic can enter the food chain and have dramatic effects on marine ecology.

Plastics packaging recycling rate by country

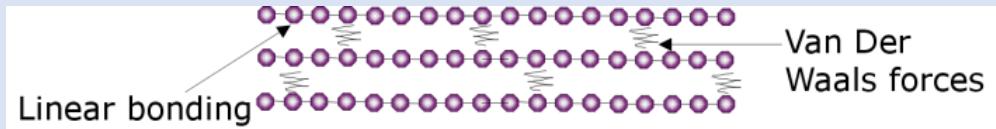
Plastic PACKAGING* recycling rate** per country in 2018

Recycling rates of plastic packaging waste in Europe range between 26% and 52%. This wide range can be explained by differences in collection schemes, available infrastructure and consumer behaviour.

European countries have challenging plastic packaging recycling targets by the next years!

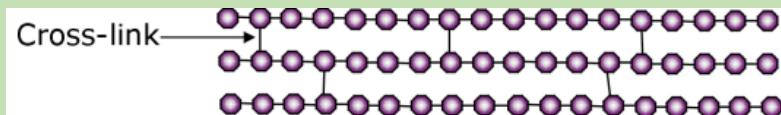
The new Directive (EU) 2018/852 on Packaging and Packaging Waste sets higher recycling targets per material (50% for plastic packaging by 2025 and 55% by 2030).

However, after collecting plastic waste and before it can be recycled, it is necessary to separate the various types of plastic.


For that it is necessary to classify them!

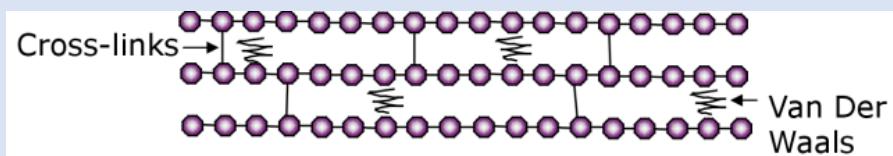
Source: Plastics – the Facts 2019

Co-funded by the
Erasmus+ Programme
of the European Union


Thermoplastics

Typically linear or branched chains, with covalent intramolecular bonds and secondary intermolecular bonds. They can be subjected to multiple heating and cooling cycles without substantially altering the molecular structure of the polymer.

Exs: Commodities: HDPE, LDPE/LLDPE, PP, PVC, PS, PET; Engineering: PA, PC, PMMA, POM, PU,...; Speciality: Kevlar, Kapton, PEEK, ...


Thermosets

Polymer chains with intramolecular covalent bonds within a 3D cross-linked network. (10-50% of cross-links). They chemically transform (cure) into a rigid structure, catalysed by heating. They don't soften with a subsequent heating, but they suffer degradation or burning at too high temperatures. Stiffer than thermoplastics, with higher dimensional stability.

Exs: Phenolics (phenol-formaldehyde); Amino-based (urea-formaldehyde, melamine-formaldehyde,...); Unsaturated polyesters; Epoxides; Polyurethan

Elastomers

Significant elastic behavior, typical of rubber. $T_g < RT$. Less cross-links than for thermosets, which together with entanglements inhibit plastic deformation or flow.

Cross-links → amorphous structure

*Exs: Chemically cross-linked (isoprene, butadiene, isobutylene,...)
Physical cross-linked / thermoplastic elastomers (ABS, SAN, SBS, ...)*

Each polymer has a characteristic melting point, for instance. Knowing which type of polymer a certain object is made of, is essential for recycling it. It becomes even more complicated if such plastic object results from a polymer formulation, consisting of different types of additives besides the polymer matrix.

Some physical properties of common plastics

Number	Plastic Type and Composition	Density/(g/mL)	Glass Transition Temperature/°C (7)	Melting Temperature/°C (7)
1	PET or PETE: poly(ethylene terephthalate)	1.38–1.39	60–85	250–265
2	HDPE: high-density polyethylene	0.95–0.97	~125	~138
3	PVC or V-poly(vinyl chloride)	1.16–1.35	81–98	200–300
4	LDPE: low-density polyethylene	0.92–0.94	–128 to –30	~138
5	PP: polypropylene (isotactic when all methyl groups are on the same side of the chain)	0.90–0.91	–8	174–177
6	PS: polystyrene	1.05–1.07	80–100	240
7	PLA: polylactic acid (8) (D and L conformations cause numbers to differ)	1.25–1.26	50–80	173–178

M.E. Harris, B. Walker, *A Novel, Simplified Scheme for Plastics Identification*,
Journal of Chemical Education, edited by Erica K. Jacobsen, Vol. 87 No. 2 (2010).

By performing a few simple tests, such as a flame or burn test, you may be able to determine which type of polymer you have. The following slides show procedures, or flowcharts of different complexity that can be followed in order to identify a polymer.

Test 1. Look at the sample. Is it transparent, translucent or opaque?

Test 2. Feel the sample. Does it bend? Can it be scratched? What does the surface feel like?

Test 3. Cut the sample with a sharp knife. Does it cut easily? Are the edges smooth or jagged? Does it crumble or flake?

Test 4. Subject the sample to a float test (in water). Does it float or sink? (Note: not applicable to expanded foam materials. Water should be around room temperature).

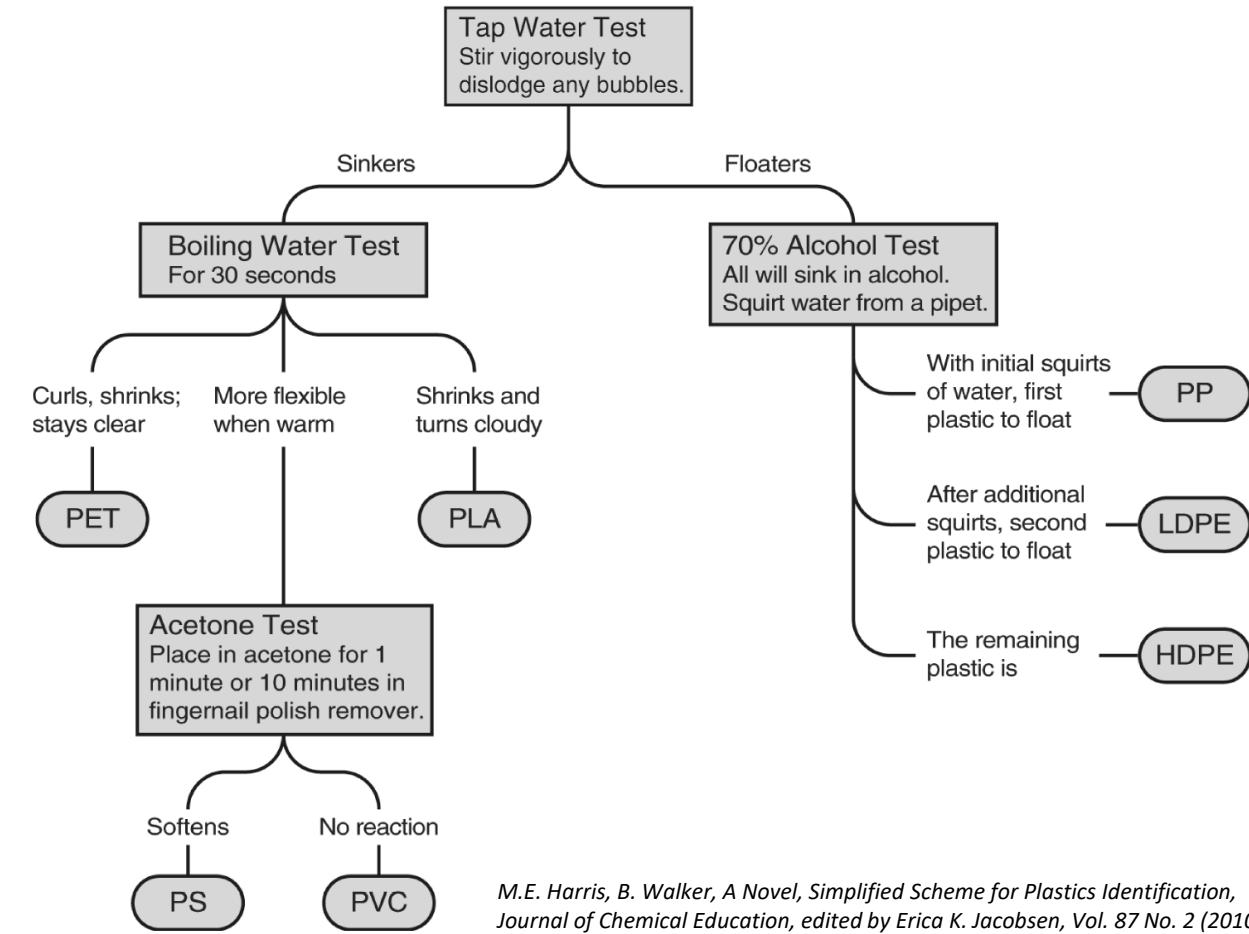
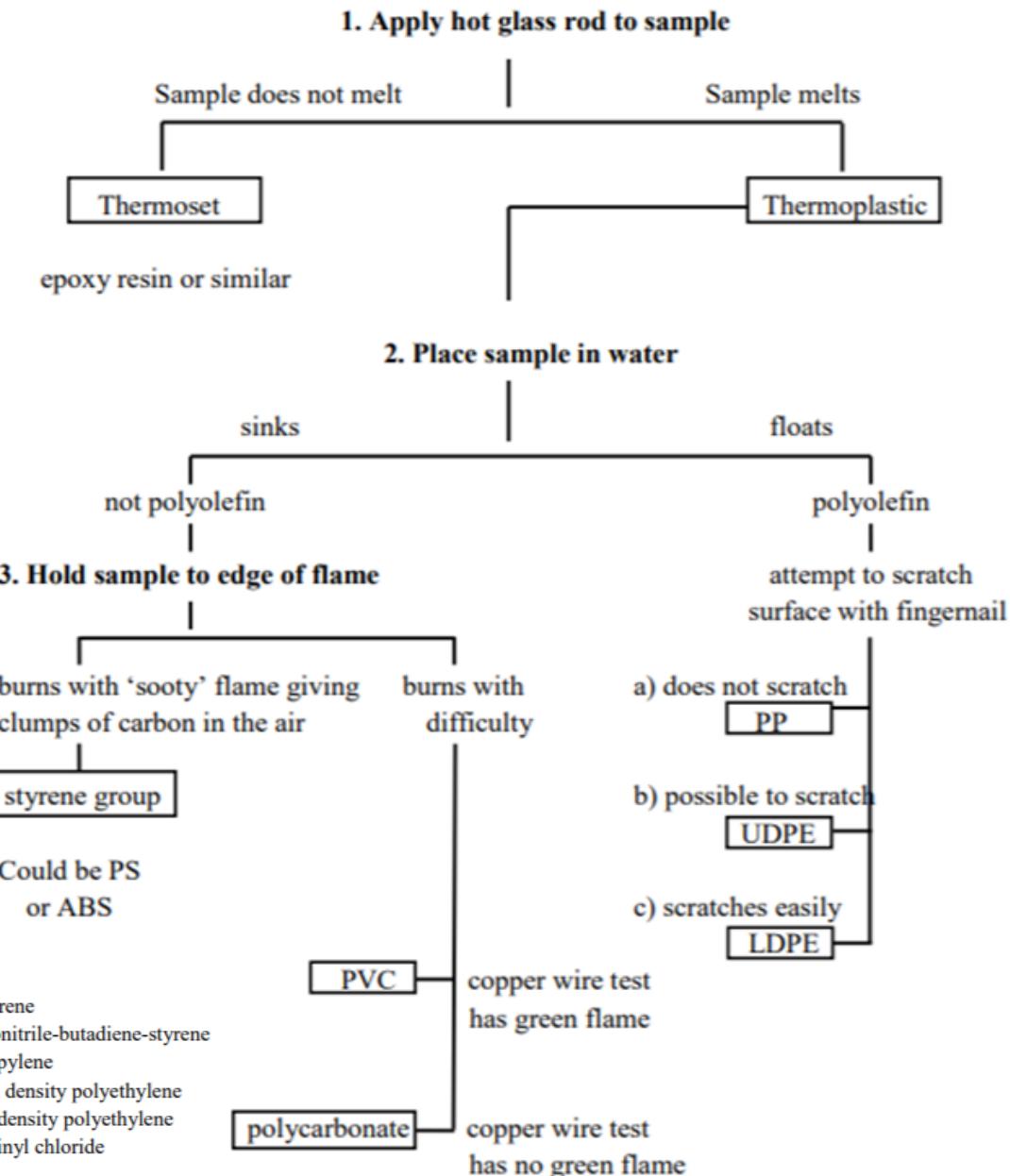
Test 5. Try to burn a small piece of the sample. What is the size and colour of the flame? Do molten drips fall from the sample and continue to burn? Does the sample self-extinguish? Is there any odour when the flame has been extinguished?

<https://www.twi-global.com/technical-knowledge/faqs/faq-how-using-simple-manual-tests-can-i-identify-an-unknown-plastic-material>

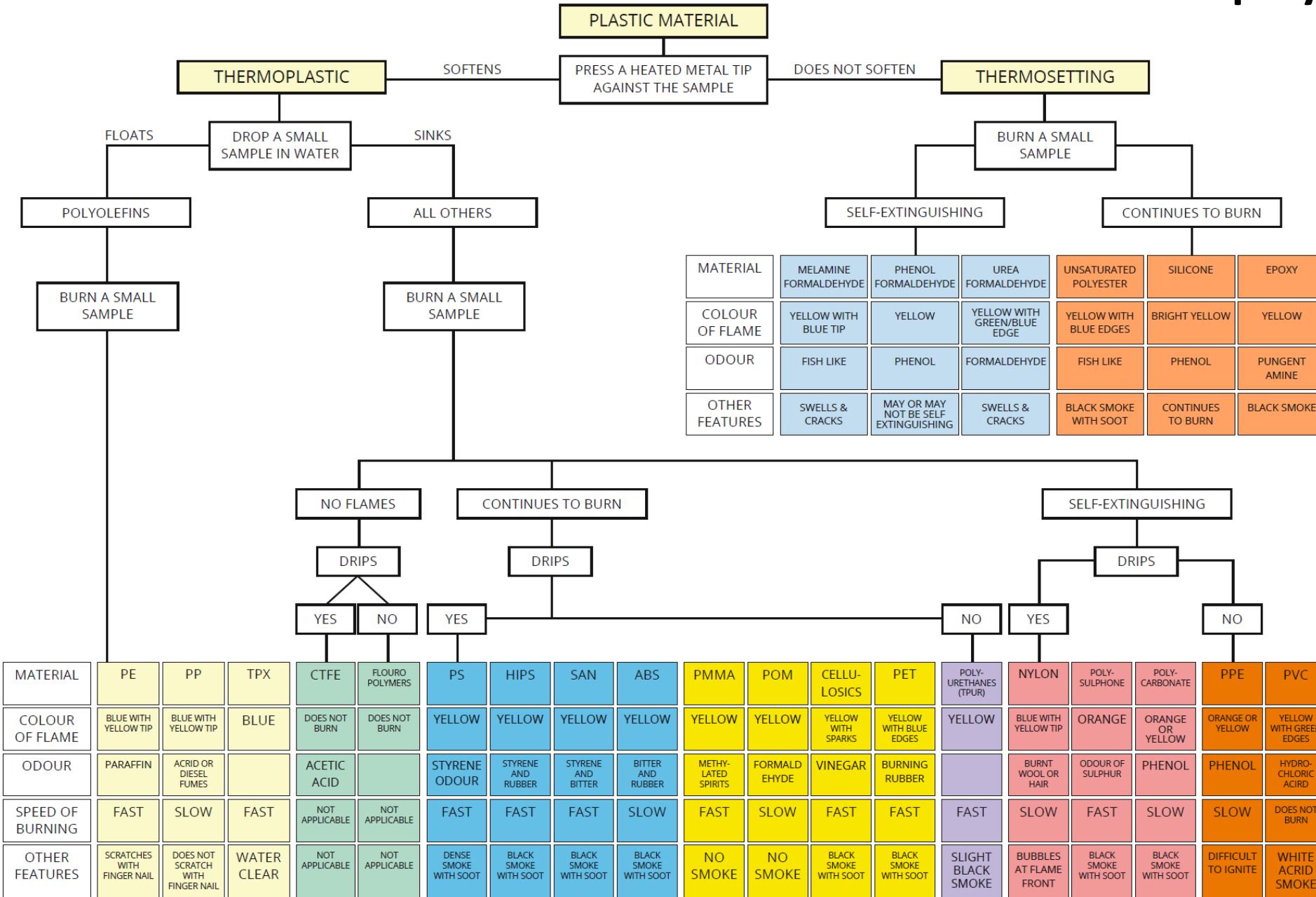
Material	Test no.	Observation
Low density polyethylene (LDPE)	1	Transparent only as thin film, translucent in thicker sections
	2	Fairly flexible; soft, 'waxy' feel, easily scratched
	3	Easily and smoothly cut
	4	FLOATS
	5	Not self-extinguishing; molten droplets which usually go out on reaching bench or floor; blue flame with yellow tip and little smoke, smell of burning candle/paraffin when flame is extinguished
High density polyethylene (HDPE)	1	Transparent only as thin film, translucent in thicker sections
	2	Fairly stiff and hard, can be scratched by fingernail
	3	Easily cut with smooth edges
	4	FLOATS
	5	Not self-extinguishing; molten droplets which usually go out on reaching bench or floor; blue flame with yellow tip and little smoke, smell of burning candle/paraffin when the flame is extinguished
Polypropylene (PP)	1	Transparent only as thin film, translucent in thicker sections
	2	Stiff; hard, can be scratched by fingernail
	3	Easily cut, fairly smooth edges, when cut with chisel leaves white mark
	4	FLOATS
	5	Not self-extinguishing; molten droplets which usually go out on reaching bench or floor; flame mainly yellow with a trace of clear blue at the bottom; smell of burning candle/diesel when flame is extinguished.
Polyvinyl Chloride, Unplasticised (uPVC)	1	Transparent (unless fillers or pigments have been added)
	2	Stiff; hard
	3	Fairly easy to cut, smooth edges
	4	SINKS
	5	BURNS with difficulty, self-extinguishing; yellow flame, blue-green at bottom edges; unpleasant, acrid odour of hydrochloric acid.

<https://www.twi-global.com/technical-knowledge/faqs/faq-how-using-simple-manual-tests-can-i-identify-an-unknown-plastic-material>

Polymers will float or sink in each of these solutions, depending on their density.



Details for preparing solutions of different densities

Density in g / cm ³	Solution
0.79	Ethanol (IDA)
0.91	47.1 g of ethanol in 43.9 cm ³ of distilled water. This concentration is still flammable . Keep away from any sources of ignition. Harmful if swallowed; can cause damage to organs .
0.94	35.4 g of ethanol in 58.6 cm ³ of distilled water. Harmful if swallowed; can cause damage to organs .
1.00	Distilled water
1.15	18.4 g of K ₂ CO ₃ in 96.5 cm ³ of distilled water. IRRITANT at this concentration.
1.38	51.3 g of K ₂ CO ₃ in 86.6 cm ³ of distilled water. It will be necessary to place this on a mechanical stirrer to speed up dissolving all the K ₂ CO ₃ . IRRITANT at this concentration.


Densities of various common polymers	
Polymer	Density (g cm ⁻³)
Silicone rubber	0.80
PP	0.85–0.92
LDPE	0.89–0.93
Natural rubber	0.92–1.00
UHMWPE	0.94
HDPE	0.94–0.98
Nylon 12	1.01–1.04
Nylon 11	1.03–1.05
PS	1.04–1.06
ABS	1.04–1.08
SAN	1.06–1.10
Nylon 6,10	1.07–1.09
Polyester resins	1.10–1.40
Epoxy resins	1.10–1.40
Nylon 6	1.12–1.15
Nylon 6,6	1.13–1.16
PAN	1.14–1.17
PVA	1.17–1.20
Nylon 4,6	1.18
PMMA	1.16–1.20
PC	1.20–1.22
PU	1.20–1.26
PVAl	1.21–1.31
Cellulose acetate	1.25–1.35
PEEK	1.26–1.32
PEI	1.27
P–F resins	1.26–1.28
PET	1.38–1.41
PBT	1.31
Cellulose nitrate	1.34–1.40
PES	1.37
Unplasticized PVC	1.38–1.41
Polyimide	1.42
Kevlar	1.44
Amino resins	1.47–1.52
PPS	1.66
PVDF	1.76
PTFE	2.10–2.30

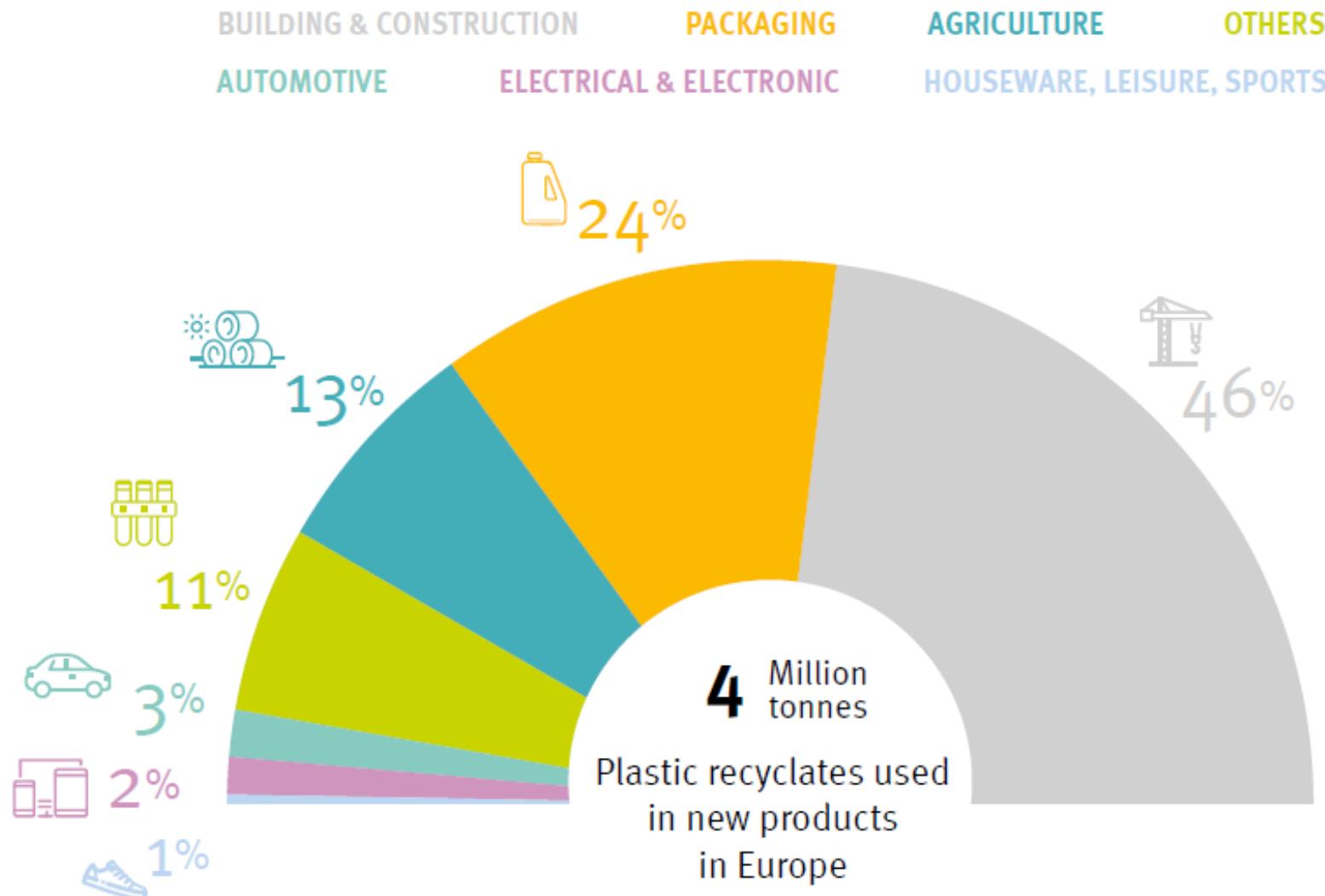
Besides density, there are other properties characteristic for thermoplastic or thermoset polymers:

	Appearance		Stiffness		Surface		Burn test											
	Transparent	Transparent (thin film)	Translucent	Opaque	Flexible (resilient)	Semi-rigid	Rigid (Brittle)	Glossy	Waxy	Dull	Black soot	Burns clean	Self extinguishing	Drips	Does not drip	Yellow flame	Blue flame	Green flame
PE-LD	●		●		●			●			●			●	●	●	●	●
PE-HD	●	●	●		●				●		●			●	●	●	●	●
PP	●	●	●		●	●		●		●	●			●	●	●	●	●
PP-CO	●	●	●		●	●		●		●	●			●	●	●	●	●
PS	●					●	●	●	●					●		●	●	●
PS-HI				●		●					●	●	●	●	●	●	●	●
SAN	●					●	●	●	●					●		●	●	●
ABS			●		●	●				●	●	●	●	●		●	●	●
PVC-R	●					●	●	●	●					●				●
PVC-P	●				●	●		●	●	●	●	●	●	●		●	●	●
PTFE			●	●	●	●		●	●			●	●	●			●	●
PVDF	●					●		●				●		●				
PVAC					●	●		●				●				●		
PVAL	●				●	●		●				●				●		
PMMA	●					●	●	●	●					●			●	●
POM			●		●	●		●	●			●	●	●		●	●	●
PA6		●			●	●		●	●			●	●	●		●	●	●
PA66		●			●	●		●	●			●	●	●		●	●	●
PSU	●					●		●				●		●		●	●	●
PI		●						●				●		●		●	●	●
CA	●					●	●	●	●			●	●	●		●	●	●
CAB	●					●	●	●	●			●	●	●		●	●	●
CN	●					●	●	●	●			●	●	●		●	●	●
PC	●					●	●	●	●			●	●	●		●	●	●
PET	●					●	●	●	●			●	●	●		●	●	●
PBT	●					●	●	●	●			●	●	●		●	●	●
PF			●		●	●		●	●			●	●	●				
PF-MF			●		●	●		●	●			●	●	●				
PF-OF			●		●	●		●	●			●	●	●				
UP			●		●	●		●	●			●	●	●				
EP	●					●	●	●	●			●	●	●		●	●	●
PUR					●	●		●	●			●	●	●		●	●	●
SI	●					●		●			●		●			●	●	●

Non-instrumental identification tests for polymers

For more information on polymers and elastomers' properties, you can consult a handbook on this topic, such as the following one:

Cardarelli F. (2018) Polymers and Elastomers. In: Materials Handbook. Springer, Cham.


https://doi.org/10.1007/978-3-319-38925-7_11

In 2018, close to 5 million tonnes of plastic recyclates were produced in European recycling facilities.

Plastic recyclates: where are they used

In 2018, from the 5 million tonnes of plastic recyclates produced in Europe, 80% re-entered the European economy in order to manufacture new products. The rest was exported outside Europe to re-enter other regions of the world's economies.

Source: © 2020 PlasticsEurope.

Co-funded by the
Erasmus+ Programme
of the European Union

Glossary of terms

ABS	Acrylonitrile butadiene styrene resin	PEEK	Polyetheretherketone
ASA	Acrylonitrile styrene acrylate resin	PE-HD	Polyethylene, high density
bn	Billion	PE-LD	Polyethylene, low density
CH	Switzerland	PE-LLD	Polyethylene, linear low density
CIS	Commonwealth of Independent States	PE-MD	Polyethylene, medium density
Conversio	Conversio Market & Strategy GmbH	PEMRG	PlasticsEurope Market Research Group
EU	European Union	PET	Polyethylene terephthalate
EPRO	European Association of Plastics Recycling and Recovery Organisations	Plastic materials	Thermoplastics + Polyurethanes
EPS	Expandable polystyrene	PMMA	Polymethyl methacrylate
ETP	Engineering Thermoplastics	POM	Polyoxymethylene
GDP	Gross domestic product	PP	Polypropylene
kt	Kilo tonnes	PS	Polystyrene
M t	Million tonnes	PTFE	Polytetrafluoroethylene
NAFTA	North American Free Trade Agreement	PUR	Polyurethane
NO	Norway	PVC	Polyvinyl chloride
Other plastics	Thermosets, adhesives, coatings and sealants	SAN	Styrene-acrylonitrile copolymer
PA	Polyamides	Thermoplastics	Standard plastics (PE, PP, PVC, PS, EPS, PET [bottle grade]) + Engineering plastics (ABS, SAN, PA, PC, PBT, POM, PMMA, Blends, and others including High Performance Polymers)
PBT	Polybutylene terephthalate	Thermosets	Urea-formaldehyde foam, melamine resin, polyester resins, epoxy resins, etc.
PC	Polycarbonate		
PE	Polyethylene		

Source: © 2020 PlasticsEurope.

Available videos on processing and characterization of polymers:

1. Plastic compounding in a twin screw extruder
2. Plastic compounding in a mini-extruder
3. Pelletization
4. Melt Flow Rate (MFR) measurement
5. Dynamic Mechanical Analysis (DMA)

The background of the image is a photograph of an underwater environment. A large green sea turtle is the central figure, swimming towards the left. The water is a deep blue. On the surface, there is a significant amount of plastic waste, including a large plastic bag and several plastic bottles of various colors (yellow, green, pink). In the background, there are many small, silvery fish swimming. The surface of the water is slightly choppy, with some white foam. In the far distance, a city skyline is visible across a layer of ice or snow.

ulisses

 UNITE!
University Network for
Innovation, Technology
and Engineering

 ULISBOA | UNIVERSIDADE
DE LISBOA