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Transport of marine microplastic particles:
why is it so difficult to predict?

Liliya Khatmullina and Irina Chubarenko

Abstract: Marine microplastic particles (MPs, <5 mm) exhibit wide ranges of densities,
sizes, and shapes, so that the entire MPs “ensemble” at every time instant can be character-
ized by continuous distributions of these parameters. Accordingly, this community of
particles demonstrates distributions of dynamical properties, such as sinking or rising
velocity, critical shear stress, and the re-suspension threshold. Moreover, all the MPs’
properties vary significantly with the time spent in marine environment and with
particular conditions experienced by the particle on its journey. A brief review of the
present-day numerical efforts towards prediction of MPs transport shows the prevalence
of the Lagrangian particle tracking approach, especially for floating litter. In a broader
context, the present practice of MPs transport modelling follows the “selective” strategy
(e.g., only a certain sub-class of MPs, or specific processes, are considered, sometimes in only
one- or two-dimensional setting). The heterogeneous nature of MPs, their enormous longevity
and movability in marine environment, and the wide spectrum of the involved environ-
mental processes suggest further integration (or coupling) of different models in future, as
well as application of other types of models (ensemble modeling, chaos theory approaches,
machine learning, etc.) to the problems of MPs transport and fate in the marine environment.
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1. Introduction

Microplastic particles (MPs, <5 mm) are found nowadays in all marine environments,
from pole to pole, from the water surface to the deep bottom sediments (Ivar do Sul and
Costa 2014). As a part of plastic marine debris, MPs pollution is of great concern due to
MPs’ ability to be transported over large distances causing potential harm to ecosystems
(Cole et al. 2011; Cozar et al. 2017; Wright et al. 2013). MPs have various densities, shapes,
and sizes, and all of these properties change with the time spent in the marine environ-
ment due to biofouling, weathering, mechanical degradation, and other external factors
(Jahnke et al. 2017; Kooi et al. 2017; GESAMP 2015). As a result, physical transport character-
istics of MPs are complicated and very specific (Chubarenko et al. 2016; Zhang 2017). Thus,
MPs are a principally new pollutant, whose transport in marine environments deviates
from that traditionally deduced from modeling of conservative tracers, Lagrangian floats,
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or oil spill patches. By the same token, MPs are only to some extent similar to natural par-
ticles, like sediment grains, phytoplankton, fecal pellets, or marine snow.

Although a lot of effort has been put into in situ observations on MPs in different
compartments of marine and freshwater environments, global understanding of mass
balances between sources and sinks, exact amounts of litter present in the world ocean,
and its pathways and accumulation zones is still lacking (Hardesty et al. 2017). Numerical
modelling is a promising tool to elaborate the required holistic view of MPs (as well as
marine plastic litter in general) in the world ocean. In its turn, relevant modeling depends
on thorough conception of MPs dynamics in the real environment; however, only initial
steps have been made in this regard (Ballent et al. 2012; Reisser et al. 2015; Chubarenko
et al. 2016; Kaiser et al. 2017; Khatmullina and Isachenko 2017; Kooi et al. 2017). In contrast,
behavior of other particles in the water column (e.g., natural sediment grains, fecal pellets,
phytoplankton) have been quite extensively studied in sedimentology and hydrodynamics
(e.g., Soulsby 1997; Turner 2002). Careful application of existing knowledge concerning
other particles may provide the necessary theoretical background for studying MPs
transport (Filella 2015; Chubarenko et al. 2016).

In this review, we highlight some aspects of the problem of adequate prediction of MPs
transport in the marine environment. We briefly review the present-day knowledge on
MPs characteristics, which are specific and different from those of other (either anthro-
pogenic or natural) marine particles. Over time, both the physical properties, such as size,
shape, and integral density, and variable fundamental dynamical properties, such as the
settling or rising velocity and the re-suspension threshold, have been changing. We make
a short (and obviously not exhaustive) overview of successful modern numerical modeling
studies of MPs transport, and suggest some directions for further development.

2. Variability of physical properties of MPs

The behavior of any particle in a fluid is determined by its physical properties, of which
the density, size, and shape make the largest (both quantitative and qualitative) contribu-
tion to its dynamics (Dietrich 1982; Filella 2015; Zhang 2017). Physical properties of a particle
determine not only the forces acting on it and the resulting physical processes (settling,
re-suspension, beaching, etc.), but also the processes related to the MP itself, including
adhesion of molecules to the surface (Teuten et al. 2009), aggregation with other particles
(Long et al. 2015; Besseling et al. 2017), biofouling (Kooi et al. 2017), and degradation
(Gewert et al. 2015; Bandow et al. 2017; Song et al. 2017).

2.1. Material density versus integral particle density

For particles found in the marine environment, the initial density of plastics
(at production) varies from about 0.05 g cm™? (for polystyrene foam) to 2.1-2.3 g cm™°
(for polytetrafluoroethylene) (Chubarenko et al. 2016). Use of fillers, stabilizers, and other
additives during the production causes deviation of the plastic material density from the
table value (Andrady 2017). By their material density, MPs could have either positive or
negative buoyancy in sea water. This defines two important external conditions: (i) whether
the MP will stay at or near the surface or sink, and (ii) which marine organisms may be
encountered in its surroundings (Andrady 2017). In the worldwide production of 311 million
tons of plastic in 2014, obviously positively buoyant plastics (polypropylene, foamed
polystyrene, polyethylene) comprise at least about 50%, whilst at least about 20% (solid
polystyrene, PVC, and PET) are negatively buoyant (PlasticsEurope 2015). Because MPs are
prone to bio-fouling and sinking with time, 50% is a zero-order approximation of the
maximum fraction of floating MPs in oceans.
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2.2. Size and shape

Size of a plastic particle is the only parameter by which it is defined as a MP. However,
the exact size limits are still not universally accepted: the upper limit is taken as 5 mm
(Arthur et al. 2009), but the lower limit is often confined to the mesh size used in the
particular field survey, and in some cases is taken at a few micrometres (Hidalgo-Ruz et al.
2012; Filella 2015; Andrady 2017). The distribution of MPs by size was attained for MPs in
the upper part of the water column (Cozar et al. 2014, 2015; Isobe et al. 2014; Enders et al.
2015; Reisser et al. 2015; Lebreton et al. 2018). On the beach, size distribution data were
reported in some case studies (e.g., Chubarenko et al. 2018b). Overall, data on sizes of MPs
found in the environment are still scarce (Hardesty et al. 2017). Such distribution
surveys are typical for sedimentology (called grain-size analysis) and should be strongly
recommended to MPs monitoring reports (Filella 2015).

MPs demonstrate a variety of shapes, which are typically categorized during visual
inspection of samples (Rodriguez-Seijo and Pereira 2017). One way of generalization could
be the dividing of MPs into three groups: quasi-one-dimensional (fibers, lines), quasi-
two-dimensional (films, flakes, flat thin particles), and three-dimensional (3D) (irregular
fragments, pellets, ovoids, cylinders, spherules) (Chubarenko et al. 2016) particles.

Ranges of MPs’ density, size, and shape overlap with those of other natural marine
particles (Table 1). Analysis of transport mechanisms and rates obtained for other particles
could be applied to MPs (Ballent et al. 2012; Hardesty et al. 2017; Khatmullina and
Isachenko 2017).

2.3. Evolution of MPs properties in the marine environment

Physical properties of MPs are permanently changing in natural environments, altering
their dynamics and transport pathways (Galloway et al. 2017; Hardesty et al. 2017; Jahnke
et al. 2017). Under environmental conditions plastic particles exhibit different types of
weathering processes: photooxidation, thermooxidation, hydrolysis, biodegradation, and
mechanical fragmentation due to wave action in the swash zone (Andrady 2011; Gewert
et al. 2015). As a result, molecular structure of the polymer changes, cracks are formed at
the surface, particles become brittle and break down into smaller pieces, implying change
of the density, size, and shape of the particles (Gewert et al. 2015; Galloway et al. 2017;
Halle et al. 2017). When combined, the weathering mechanisms could lead to more rapid
breakdown of MPs than in the case of each of the mechanisms separately (Song et al.
2017). Rates of MPs weathering and fragmentation depend on plastic type and morphology
(Shah et al. 2008; Gewert et al. 2015; Bandow et al. 2017; Song et al. 2017; Efimova et al. 2018);
however, the exact rates of MPs weathering taking place in the environment and not in
laboratory conditions are still poorly investigated (Gewert et al. 2015).

Almost any solid surface introduced to the natural environments offers a new substrate
for colonizing and fouling organisms (Abarzua and Jakubowski 1995), and plastics are no
exception (Galloway et al. 2017). The presence of biofilm at the surface of plastic pellets
was reported as long ago as 1972 by Carpenter and Smith (1972), and recent works
demonstrate the presence of diverse microbial communities on the surface of weathered
microplastic debris (Zettler et al. 2013; Reisser et al. 2014). Colonization by organisms is
supposed to increase particle density and sinking capacity, explaining why light plastics
are found in marine sediments (Morét-Ferguson et al. 2010; Woodall et al. 2014); however,
not many works report the quantitative effect of biofouling using in situ exposure
experiments (Ye and Andrady 1991; Fazey and Ryan 2016; Kaiser et al. 2017). Biofouling is
supposed to be especially important for initially positively buoyant particles that remain
at or near the water surface — in the photic zone — where biofilm formation is possible.
Initially negatively buoyant particles would most probably leave the photic zone prior to
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Table 1. Size, shape, and density of marine particles.

Particle Density (g/cm®) Size (mm) Shape
MPs 0.05-2.1 (Chubarenko <5 (Arthur et al. 2009) Quasi-1D (fibers, lines), quasi 2D (films,
et al. 2016) flakes, flat thin particles), 3D

(irregular fragments, pellets, ovoids,
cylinders, spherules)

Amber 1.05-11, up to 2.00 — Rather irregular but definitely
(Chubarenko and volumetric (3D) shapes; many of
Stepanova 2017) them break in parts in stormy waves
and have sharp fresh cleavages
(Chubarenko and Stepanova 2017)
Quartz sand 2.65 0.062-2 (very fine to Irregular, 3D, rounded, angular
very coarse sand) (Blott and Pye 2008)
(Wentworth 1922)

Calcerous sand 2.6-2.7 0.062-2 (very fine to Irregular, flat, variety of shapes
(coccoliths, very coarse sand) associated with their biological
corals, pieces (Wentworth 1922) origins, rod, blade, disc, and equant,
of carbonate rough surface textures and jagged
materials) edges (Wang et al. 2018)

Fecal pellets 11-1.2 (Yoon et al. from 0.4—4 to tens of Ellipsoid, cylindrical with rounded or

2001), density is pm, minipellets tapered ends, conical, spiral (Yoon
reported to vary (Turner 2002) et al. 2001), spherical (Turner 2002)
according to the
quality and quantity
of food ingested by
the zooplankton
(Turner 2002)
Marine snow 1.03-1.3 (Maggi 2013); 1-4 (Iversen and Irregular, 3D aggregates of multiple
~1.03 (Iversen and Ploug 2010) particles; aggregates may originate
Ploug 2010) from abandoned larvacean houses,
diatom and dinoflagellate flocs, fecal
aggregates, and aggregates of
miscellaneous detritus (Turner 2002)
Oil droplets 0.72-1.04 (Fingas 2017) 0.001-0.070 Spherical
(Lunel 1993)

the formation of substantial biofilm. Biofouling processes depend not only on the fouling
species, water temperature and transparency, and availability of nutrients and sunlight
in water, but also on the particle surface-to-volume ratio, and thus strongly depend on the
particle’s shape and size (Chubarenko et al. 2016; Fazey and Ryan 2016; Kooi et al. 2017).

The effective (integral) density of a particle could also be changed due to interaction with
other organic or inorganic particles, natural colloids, and suspended soils. Besseling et al.
(2017) experimentally showed that MPs undergo hetero-aggregation with clay particles,
and modeled that the resulting excess of mass on the surface of MPs leads to particle
sedimentation and further retention at the bottom of the estuary. Other mechanisms that
potentially enhance vertical flux of MPs to the ocean floor are incorporation into fecal
pellets or marine aggregates consisting of phytoplankton cells and detritus (Wright et al.
2013; Long et al. 2015; Michels et al. 2018).

It is important to mention here that while the rates of MPs evolution presumably vary
for different types of plastics, in general, changing of properties in the natural environment
is known and reported also for other particles. Oil spills are quite similar to the MPs in this
vein. Oil discharged to the sea surface is carried by currents and is subjected to various
processes, evaporation, emulsification, dissolution, photolysis, dispersion, biodegradation,
etc., which depend on the initial properties of the oil (Fingas 2017). In the marine environ-
ment, under the action of waves and turbulence, oil patches can be completely or partially
broken into droplets of various sizes (Lunel 1993). Oil droplets mixed in the upper layer
of the water column can interact with each other, merge or break into smaller droplets,
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aggregate with other mineral particles and sink, be available for interaction with marine
organisms — some of these processes are also typical for MPs. At the same time, physical,
chemical, and biological processes that erode or modify oil as it drifts and spreads occur
on different time scales from several hours to months or even years (Korotenko et al.
2004). The similarity of these two types of marine pollution indicates the possibility to
apply numerical models developed for oil spills to the MPs investigation.

3. Dynamical properties of MPs

In environmental hydrodynamic modeling, motion of the particle in the flow is
classically described by its fundamental parameters, such as terminal sinking velocity and
critical shear stress of re-suspension. The former characterizes the free fall of the particle
through a still water column, while the latter indicates the threshold flow velocity below
which the particle cannot be re-suspended from the bottom.

3.1. Sinking and rising velocity of MPs

Bottom sediments are supposed to be the end-point for all the MPs present in the water
column (Andrady 2011; Woodall et al. 2014; Kooi et al. 2017; Bagaev et al. 2018). Terminal
sinking (or settling) velocity is defined as a maximum velocity of the particle falling in a still
fluid without acceleration (e.g., Hallermeier 1981; Dietrich 1982). This is a crucial
hydrodynamic parameter of a non-buoyant particle that has been extensively studied for
more than 100 years in sedimentology, hydrodynamics, and also in more application-
focused disciplines like hydraulic engineering, pipeline construction, etc. (Hallermeier
1981; Dietrich 1982; Ayazi Shamlou 1987). For MPs, this parameter determines residence
time of a particle spent in the water column, and the possible distance to which it could
be transported by currents in a real environment.

Rising velocity (upward terminal velocity in Isobe et al. (2014) and Hinata et al. (2017)) is
the corresponding parameter introduced for particles with positive buoyancy; it reflects
the balance between the same forces (gravitational, buoyancy, and drag forces). In the field
of MPs research, it is required for analysis of MPs migrations due to biofouling and defoul-
ing, transport and beaching of MPs under wave-induced motions in sea swash zone, captur-
ing of buoyant MPs into the water column by wind- and wave-induced mixing, etc.
Although the existing works on rising velocity did not accomplish extensive comparison
of experimental values and observations with the semi-empirical and theoretical predic-
tions developed in hydrodynamics, discovered tendencies repeat those that have already
been known for behavior of particles in a fluid. Both settling and rising velocities depend
on the size of the particle, on the density difference between particle and fluid, and on
the shape, which determines the manner of settling or rising and the presence of secondary
movements (Kukulka et al. 2012; Ballent et al. 2013; Reisser et al. 2015; Kooi et al. 2016;
Kowalski et al. 2016; Khatmullina and Isachenko 2017). Experimental values of settling
velocity of different MPs range between 1 and 127 mm/s, equivalent to about 86 m — 11 km
per day (Kowalski et al. 2016; Bagaev et al. 2017; Khatmullina and Isachenko 2017). Some
of the existing semi-empirical formulations of terminal settling velocity developed for sand
grains (Dietrich 1982; Ahrens 2000) showed good correspondence with experimental data
on settling of MPs spheres and cylinders (Khatmullina and Isachenko 2017). Rising velocities
of MPs sampled in the North Atlantic subtropical gyre span between 1 and 43 mm/s, or,
between 86 m and 3.7 km per day (Kukulka et al. 2012; Reisser et al. 2015; Kooi et al. 2016).

In a real environment, a particle’s settling and rising rate deviates from the terminal
settling or rising velocity. Motion of relatively small and light MPs in natural (generally
stratified) waters is significantly influenced by turbulence and currents (see, e.g., Nielsen
1993). Increased turbulence near the surface is responsible for establishing an exponential
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decrease of particle concentration with depth in the subsurface mixed layer: because of
the wind mixing, floating MPs become submerged and start to float to the surface with
different rates according to their properties, and the extent of the decrease is inversely
proportional to wind speed (Kukulka et al. 2012; Reisser et al. 2015; Kooi et al. 2016). Many
plastics have densities only slightly lower or higher than that of seawater, and the level of
turbulence required for retaining such MPs in suspension (submerged below surface or
above sea bottom) is relatively small (Filella 2015). Ballent et al. (2012) have experimentally
shown that susceptibility to turbulence depends on MPs’ size and shape: large, irregularly
shaped pieces were easily submerged by surface turbulence, whereas spherical pellets were
the most resistant. Another factor influencing the particle’s vertical velocity while falling
though the water column is highlighted in Cheng (1997) and Baldock et al. (2004): the
particle is not isolated from other grains, and their presence modifies the settling velocity
of an individual particle due to mutual interference among them. Moreover, collision with
organic and inorganic particles and biofouling lead to a change of settling velocity of
the resulting aggregate (Wright et al. 2013; Long et al. 2015; Besseling et al. 2017; Kooi
et al. 2017).

Ocean density discontinuities also interfere with settling process predicted for a particle
in a still unified fluid. Non-buoyant MPs will slow down as the density difference between
particle and water decreases, which may lead to accumulation of MPs at mid-water depths
with high density gradients (Ye and Andrady 1991; Kooi et al. 2017).

Most of the aforementioned aspects concerning vertical transport of MPs were also
investigated for other marine particles. Settling velocity of fecal pellets varies according
to their size, density, and shape (Yoon et al. 2001; Turner 2002). Density discontinuities in
a water column are known as the “accumulation zones” of marine snow (MacIntyre et al.
1995). Turbulent mixing is attributed to the accumulation of fecal pellets in the upper layers
of the water column (Turner 2002). Therefore for deeper understanding of MPs motion in
the water column it may be beneficial to consider existing studies on the transport of other
particles in the ocean (see Table 1).

3.2. Re-suspension threshold

Magnitude of critical shear velocity (or shear stress) characterizes the threshold below
which water currents are unable to re-suspend particles from the bottom. This parameter
is vital for modeling of transport of particles settled to the bottom in deep areas, or saltated
over a coastal slope under the influence of surface waves, or beached-recaptured by swash,
etc. This key topic has received very little attention up to now. The only investigation was
reported by Ballent et al. (2013), where standard plastic pellets were re-suspended in a rotat-
ing chamber. Chubarenko et al. (2018a) mentioned an attempt to apply to MPs the classical
Shields methodology (Shields 1936), commonly used to determine critical shear stress for
natural sediments. The bottom of a 10 m long laboratory channel with unidirectional
step-wise changeable flow was covered either by natural marine sand (1-1.5 mm), or by
granules (3—4 mm), or by pebbles (1-2 cm). MPs of various shapes (irregular 3D fragments,
spherules; flakes; fishing line cuts, flexible threads), size, and density were used. These tests
provided an insight into the new MPs-related challenge: in contrast to natural sediment
grains, which are to be re-suspended in the sea from the bottom covered by particles of
similar properties, the MPs are to be re-suspended from natural sediments, (i.e., from the
bed covered by particles differing from MPs by the size, shape, and density). Two para-
meters seem to be important for MPs re-suspension: (i) the ratio of the characteristic size
of MP to the bed roughness (i.e., to the grain size of the bed load sediment), and (ii) the
shape of the MP. The latter defines the manner in which the particle responds to the flow:
3D particles tend to roll over the bed surface; flat particles suddenly saltate from the
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bottom and then fly long distances over the bed until next settling; one-dimensional lines
and threads roll over the sediments until they turn along the direction of the current, and
then begin saltatating. Overall, initiation of motion of the same very particle at the same
kind of bed load significantly depends on the initial particle orientation, and is especially
variable at coarser sediments. After beginning their motion over pebble-covered rough
bottom, all the particles tend to be caught in-between stones, and it is only sudden or
stochastic turbulent bursts that can bring them back into the flow (Chubarenko et al.
2018a). Straightforward practical conclusion for further field and modeling applications is
the fact that the key factor for re-suspension of MPs is the bed roughness: the larger the
grain size of the bed load, the larger the range of variability of the magnitude of the critical
shear stress.

4. Modelling of MPs transport — current progress and open questions

Numerical modeling is one of the most effective tools in investigation of dynamics and
transport of contaminants in both marine and freshwater environments.

Several studies used one-dimensional models to obtain physically relevant conclusions
about vertical transport and distribution of MPs. The effects of different types of turbulence
in the ocean surface boundary layer on the vertical distribution of buoyant tracers, includ-
ing influence of the Langmuir circulation and turbulent kinetic energy input due to break-
ing waves, were modeled using the large eddy simulations approach (Kukulka et al. 2012;
Brunner et al. 2015; Kukulka and Brunner 2015). Enders et al. (2015) analyzed transition
between buoyancy-dominated and turbulence-dominated vertical distributions of
polyethylene MPs of three size classes in the upper 100 m layer (Enders et al. 2015).
Theoretical model based on settling, biofilm growth, and ocean depth profiles for light,
water density, temperature, salinity, and viscosity in addition to simple sinking and rising
of particles predicts oscillating vertical movement of MPs related to biofouling and
dependent on the particle size and density (Kooi et al. 2017). The influence of MPs physical
properties (size, shape, density) on their respective rates of windage, settling, and effects
of biofouling were described using simple analytical calculations (Chubarenko et al. 2016).

The Lagrangian approach (or numerical particle-tracking) based on introduction of
virtual particles that are allowed to move freely through the hydrodynamic field simulated
by ocean circulation models is most frequently used to investigate transport of marine
debris (Lebreton et al. 2012; Maximenko et al. 2012; van Sebille et al. 2012) including MPs
(van Sebille et al. 2015; Hardesty et al. 2017; Lebreton et al. 2018) on both global and regional
scales (e.g., Kubota 1994; Isobe et al. 2014, 2015; Neumann et al. 2014; Critchell et al. 2015;
Mansui et al. 2015; Critchell and Lambrechts 2016; Liubartseva et al. 2016; Bagaev et al.
2017; Carlson et al. 2017; Li et al. 2018). Because the majority of field data on MPs in the
ocean, available for models’ verification, consists of manta-neuston net surface samples,
MPs Lagrangian modelling is predominantly focused on the transport of floating tracers
at the ocean surface (van Sebille et al. 2015; Hardesty et al. 2017). Advection mechanisms
implemented in the modeling frameworks include sea surface currents in all cases, and
sometimes other factors, (e.g., Stokes drift (Kubota 1994) and windage (Kako et al. 2014;
Bagaev et al. 2017; Lebreton et al. 2018)). Global hydrodynamic models coupled with
Lagrangian models to simulate transport of floating litter and MPs were able to predict
general patterns of distribution (e.g., accumulation of particles in the “garbage patches”),
to some extent seasonal variation of the patch location and its spatial dimensions
(Lebreton et al. 2018), and to give estimations on the temporal increase of the MPs’
abundances in the patch based on current estimations of mismanaged plastic waste and
future plastic waste scenarios (Isobe et al. 2019). However, predicting more or less realistic
(absolute) values of MPs pollution is out of scope of such models, yet, also due to the lack
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of relevant amount and quality of field data. Known discrepancy between the estimations
of annual plastic litter discharge to the oceans (4.8-12.7 million tonnes for 2010 (Jambeck
et al. 2015)) and modelled estimates of total weight of the floating plastic litter at the ocean
surface (0.27 million tonnes (Eriksen et al. 2014)) is explained by the presence of effective
removal processes (Koelmans et al. 2017), such as settling due to biofouling, beaching,
incorporation to the ice, etc., which are not specifically considered in the global models.

MPs transport “below the surface” was also studied using the Lagrangian approach in
more detailed regional or process-oriented studies. A two-dimensional XZ model account-
ing for buoyancy, friction, and Stokes drift allowed reproduction of nearshore dynamics
of buoyant MPs in the Seto Inland Sea, Japan (Isobe et al. 2014). Terminal rising velocity
was parameterized using three formulas for spherical particles of different diameters with
the density of polyethylene as of the most common type of MPs according to the field data
from the study region. Simulated 3D transport of non-buoyant MPs in the Nazaré canyon,
Portugal, revealed up—down-canyon motions of particles under tidal forcing, seasonal
variation of MPs transport, and allowed estimation of MPs residence times and average
transport rates along the canyon (Ballent et al. 2012, 2013). Settling rates, bedload motion,
critical and resuspension shear stress were parameterized using experimental data
acquired for one type of the high density preproduction pellets. Effect of buoyancy on
the residence time of MPs in Lake Erie, USA and Canada, was evaluated by comparing
numerical results of a 3D model with passive Lagrangian tracers with vertical diffusion
(“neutral buoyancy particles”) and with surface currents only (“buoyant particles”)
(Cable et al. 2017). Such comparison showed that “neutrally buoyant plastics”
were flushed to the coastline several times slower (and remained then in the nearshore
zone according to the model setting) than the “floating” ones, thus having greater
residence times.

Critchel and Lambrechts (2016) suggested a depth-averaged two-dimensional model
coupled with Lagrangian particle tracking, which implements various aspects of MPs
transport in the coastal zone. They highlighted greater sensitivity of numerical solutions
to the source location, turbulent diffusivity, re-suspension of beached plastics, and the rate
of degradation of macroplastics to MPs, than to other processes (Critchel and Lambrechts
2016). In a recent paper by Jalon-Rojas et al. (2019) the most complex Lagrangian-type model
mentioned here was tested. The 3D TrackMPD model accounts for many physical processes
(advection, dispersion, windage, sinking, settling, beaching, and re-floating of particles) and
evolution of MPs properties due to biofouling and degradation. Sensitivity tests revealed
that sinking has a dramatic impact on MPs trajectory and fate, followed by turbulent
dispersion and beaching. Although such sophisticated models seem to be quite promising,
they still require realistic parameterizations and validation based on experimental or
field data.

With all the advantages of the Lagrangian-type as a representative of deterministic
models in simulating of the behavior of a certain MPs particle or MPs-related process in
circulation models, important general questions remain unanswered, like variation in time
of general (observed) concentrations of MPs in a region or in the ocean, distribution of MPs
between geographical regions or environments (water, sediment, and beach), general
removal rate from the surface, etc. These — real-life — aspects require a holistic representa-
tion of MPs as an ensemble of particles, despite of the fact that every individual particle has
its own basic initial properties (density, size, shape) and its own time rate of change of those
processes under the particular environmental conditions. In this regard, probabilistic
models and modeling approaches could be considered, accounting for distributions
of parameters that are inherent for MPs. As an example, Granado et al. (2019) use
Bayesian networks successfully for beach litter forecasting. Various probabilistic methods
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are applied in marine sciences for similar (transport and fate of MPs) problems
(e.g., an entropy theory is used for suspended sediment transport (Khorram and
Egril 2018), ensemble model with uncertainty analysis is applied for forecasting of
chlorophyll-a concentrations (Shamshirband et al. 2019), recurrent neural network and
improved evidence theory predicts water quality (Li et al. 2019), machine learning
approach is used to predict the settling velocity of non-cohesive particles (Goldstein and
Coco 2014)). Such models may help in answering the most general and most practically
needed questions related to the contamination of environments by MPs, considered as
an ensemble of particles, with a wide range of properties permanently changing with time.
This will also require adjustment of field data collection, with an emphasis on acquiring
a normalized distribution of parameters rather than absolute concentrations or
characteristics.

5. Conclusions and outlook

Global plastic debris models, based on simulation of the ocean circulation, reproduce
well the observed accumulation of floating macro- and microplastics in the subtropical
gyres and convergence zones. Other MPs-related transport issues still require further field
verification. With all the success of the used approaches, some of the key specific features
of marine MPs still remain practically not addressed. These features include (i) inherently
heterogeneous composition of MPs “community” by size, density, and shape (this necessi-
tates also the range or spectrum of dynamical properties of MPs); and (ii) intrinsic evolution
of all the MPs properties, depending on the particular environmental conditions experi-
enced by a particle, and the time spent in the marine environment. For such a specific
contaminant, the deterministic physical models are able to clarify only some questions.
This indicates the need to apply not only MPs-specific parameterizations in the circulation
models (e.g., the random walk term, or the differential particle loss from the surface), but
also alternative approaches, able to deal with ensembles of particles characterized by a
spectrum of properties. Initial steps may include the incorporation of probabilistic depend-
encies into deterministic models (e.g., for sinking or fragmentation processes). Promising
alternative approaches may be employment of, for example, ensemble forecasting (where
the real solution should fall within the predicted ensemble spread), application of the chaos
theory (e.g., use of the entropy theory for suspended sediment transport), ecosystem-scale
modeling (e.g., for bioaccumulation), statistical (probabilistic) models, machine learning
algorithms.

In summary, numerical modeling of MPs transport and accumulation pattern seems to
be one more challenge of the emerging “MPs science”, along with methodical issues,
monitoring problems, and shortage of field data. A practical way forward today could be a
continuation of the “selective” strategy in modelling of MPs behaviour in natural waters,
with the main modelled “classes” of MPs still to be determined.
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