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Abstract: The miniaturization and affordable production of integrated microelectronics have improved
in recent years, making unmanned aerial systems (UAS) accessible to consumers and igniting
their interest. Researchers have proposed UAS-based solutions for almost any conceivable problem,
but the greatest impact will likely be in applications that exploit the unique advantages of the
technology: work in dangerous or difficult-to-access areas, high spatial resolution and/or frequent
measurements of environmental phenomena, and deployment of novel sensing technology over
small to moderate spatial scales. Examples of such applications may be the identification of wetland
areas and use of high-resolution spatial data for hydrological modeling. However, because of
the large—and growing—assortment of aircraft and sensors available on the market, an evolving
regulatory environment, and limited practical guidance or examples of wetland mapping with UAS,
it has been difficult to confidently devise or recommend UAS-based monitoring strategies for these
applications. This paper provides a comprehensive review of UAS hardware, software, regulations,
scientific applications, and data collection/post-processing procedures that are relevant for wetland
monitoring and hydrological modeling.
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1. Introduction

The past decade has seen rapid progress in the miniaturization and affordable production of
integrated microelectronics. These developments have made unmanned aircraft systems (UAS) accessible
to consumers, and piqued interest in their application to a wide variety of problems. Concurrent advances
in sensor technology and data processing have enabled a diverse array of highly accurate measurements
to be made with UAS. Regulators have been challenged to keep pace with rapid commercial development
and emerging practices, but have responded with clear guidance that preserves a niche for UAS use in
commercial and research endeavors. UAS-based solutions have been proposed for almost any conceivable
problem, but the greatest impact will be realized for applications that exploit the unique advantages of
the technology, namely: work in dangerous or difficult to access areas, high spatial resolution and/or
frequent measurements of environmental phenomenon, and deployment of novel sensing technology over
small to moderate spatial scales. Collecting spatial data with very high resolution, perhaps frequently,
and, with unique sensors, creates many opportunities for environmental monitoring. Without UAS,
most environmental monitoring applications resort to time and resource intensive manual collection of
highly detailed information, and/or rely on much coarser scale but more extensive airborne or satellite
observations. UAS-based observations offer a middle-ground between these scales of measurement, and so
will be most useful when applications require very detailed information of areas too large for manual data
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collection, but somewhat smaller than is offered by manned aircraft. The identification of jurisdictional
wetland areas for road planning purposes is potentially one such application. However, because there is
a large and growing assortment of aircraft and sensors available on the market, an evolving regulatory
environment, and limited practical guidance or examples of wetland mapping with UAS, it has been
difficult to confidently devise or recommend UAS-based monitoring strategies.

This paper provides comprehensive review of UAS hardware, software, regulations,
scientific applications, and data collection/post-processing procedures that are relevant for wetland
monitoring. Section 2 provides an overview of the wetland mapping problem and identifies areas that
UAS-based observation can provide unique and helpful information. Section 3 provides an overview and
technical details for a wide variety of commercially available flight platforms and UAS-mountable sensors.
Section 4 gives a detailed account of the UAS data collection procedure including flight planning and
post-processing, as well as regulatory information. Finally, Section 5 summarizes the scientific literature
on mapping of wetlands from remote sensors and other closely-related topics.

2. Background

The challenge in mapping wetlands lies in their delineation from the ground [1]. The diversity and
density of the vegetation as well as the presence of saturated and unstable areas that are impossible to reach
by surveyors call for an alternative mapping solution. Therefore, since the advent of aerial photography,
in the second half of the 18th century, mapping wetland extents from a “birds eye” perspective has been
the goal of many aerial surveys. The past several decades have seen a proliferation of imagery from orbital
and airborne platforms with a wide range of spatial and spectral resolutions [2,3]. Still, the delineation of
wetlands has remained challenging. Until recently, there has been a lack of orbital satellites with the ability
to produce the very high spatial resolution imagery that might enable the delineation of small wetlands.
Even now, with a relatively high number of commercial satellites collecting very high spatial resolution
multispectral imagery, the data remain mostly inaccessible due to the high cost, and there have been very
few successful wetland mapping efforts [4,5]. Traditional aerial photography from manned aircraft offers
an alternative, but this sensing technology is also constrained by cost, operational complexity, and logistical
considerations. In terms of spatial scale of measurement and mapping, there has been a void between
large to medium sized areas that are the domain of manned aerial surveys, and very small, fine scale
terrestrial measurements collected at individual points or for small plots. Advances in unmanned aerial
technology promise to fill this gap and provide the types of highly detailed measurements previously
only possible with laborious ground measurements, but at much broader spatial scales. UAS provide
an alternative platform for capturing data with versatility, adaptability and much greater flexibility than
manned airborne systems and satellites, and can offer spatial and spectral resolutions comparable to
terrestrial surveys at a fraction of the cost [6]. Additionally, thanks to the ease of use and flexibility of
deployment, information can be kept up-to-date more practically and efficiently.

While satellites are still the leading source of large coverage data, UAS are irreplaceable when it
comes to affordability and spatial resolution. The ability of UAS to provide sub-centimeter resolution
imagery (and frequently) is unmatched by satellite alternatives (see Figure 1). Manfreda et al. [5] provide
a cost comparison between satellite imagery and UAS data. They indicate that satellite provision of
high resolution natural color imagery (50 cm/pix) can cost up to $3000, whereas UAS not only provide
higher resolution (even to couple cm/pix) but for less than $1000. Unlike satellite or airborne alternatives,
the operation of UAS typically requires an initial investment in a UAS platform and the processing software.
However, Manfreda et al. [5] argue that, after the purchase, the temporal resolution is limited only by the
number of flights (and power supply/battery capacity), so any cost equivalence is quickly overcome due
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to repeatability. Data storage, man power, field expenses and incidental maintenance are additional, but
usually minor costs.

Figure 1. Comparison of the most important aspects of spatial data acquisition, after [5].

An additional comparison of the cost of data acquisition and processing by UAS, manned aircraft and
satellite by Matese et al. [7] shows that UAS are the most cost-effective solution for areas 20 ha or smaller.
Their quantitative analyses show that the approximate total cost of a UAS-derived normalized difference
vegetation index (NDVI) map over a 5 ha field is equal to $450/ha, while similar satellite products may
cost about 30% more. Another example of a cost benefit of using UAS can be found in Dustin [8]. The cost
of purchasing a UAS platform for the purpose of mapping a park area with an extent of approximately
10 ha is 20% lower than the starting price of hiring a manned aircraft to collect data one time. The cost
effectiveness would increase significantly for data collection on a regular basis since the initial cost of
a platform will not contribute to the expenses. More information of the cost and time effectiveness of UAS
can be found in Section 4.3.

The advantages of UAS for environmental applications such as wetland monitoring go far beyond
their cost effectiveness and ability to obtain very high spatial and temporal resolution data. For instance,
the rapidity of UAS-based data collection offers near real time spatial information, whereas there is
often a lag associated with alternative methods. The flexibility of deployment, especially for the case of
rotary-wing UAS solutions (see Section 3.1), solves a number of accessibility and safety issues in dangerous
or hard to reach areas (e.g., in wetlands) [9]. Although UAS operation depends on weather conditions,
van der Wal et al. [10] calculated that satellite-based remote sensing has a 20% probability of producing
an adequate image, while the probability of a usable image from a light-weight, weather sensitive
UAS is 45% and rises to over 70% if an all-weather UAS is used. Unlike the sun-synchronous satellite
sensors, collecting data with UAS is not limited to certain hours, and with adherence to legal procedures
(see Section 4.4) enables near continuous environmental monitoring [5].
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These aforementioned capabilities, together with the increasing variety and affordability of UAS and
sensor technologies, and the rapid development of processing solutions, have resulted in booming interest
in UAS utilization from researchers across various environmental domains.

3. UAS Platforms

Remote sensing platforms have been used as a tool for acquiring spatial data even before the invention
of the airplane. The need of a bird’s-eye view of the Earth surface was pushing the photography pioneers to
place cameras in hot air balloons, kites, and even mount them on the breasts of pigeons. With the invention
of the airplane, manned airborne aerial photographs started to revolutionize military reconnaissance
and surveillance. Analog photographs became the first form of remote sensing used within geography.
The next pivotal moment for the development of photogrammetry as a science and technology of making
measurements from pictures was the invention of digital photography coupled with advances in computer
science during the last decades of the 20th century. In the same time period, UAS technology was widely
used in the military context, but its potential for spatial data acquisition was recognized early by geospatial
researchers [11]. Their early experiments initiated the use of UAS in photogrammetry and remote sensing.
Twenty-first century advances in computer science, imaging sensors, autonomous and remote control
techniques, miniaturization of electronic components and the increasing accuracy of global navigation
satellite system (GNSS) and inertial measurement units (IMU) paved the way to the rapid development
of UAS technology and forever changed the field of photogrammetry and remote sensing, and created
endless possibilities for research and business applications.

These most recent developments have occurred at an incredible pace, so the intent of this section is to
make sense of the wide variety of currently available platforms and sensors that comprise a UAS.

3.1. The System

The reader can easily be lost with the multitude of names describing UAS. The media popularized
term “drone” can be misleading, pointing out only the flying vehicle itself. Unmanned aerial vehicle,
or UAV, has been used interchangeably with the term UAS, but most recently the latter gained more
popularity since including the word system best describes the complexity of the technology. In particular,
the term UAS better captures the fact that the aerial vehicle is just one of the components in a much larger
system (Figure 2).

Figure 2. General architecture of an unmanned aerial system.

A UAS aircraft’s flight trajectory can be preprogrammed to fly autonomously or manually controlled
by a remote pilot. In both cases, the ground control station (tablet, laptop, remote control, etc.) is a critical
component of the system. The data link enabling the communication between aircraft and ground control
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station is the third essential element of a generic UAS. Depending on the technology and applications,
various UAS models differ not only in size and design but also in included system components. To the
most important belong: autopilots, navigating sensors, mechanical steering components, and payloads
(typically data acquisition sensors).

The multitude of solutions and systems has invited extensive categorization efforts. Moreover, the
diverse and changing nomenclature is amplified by constant innovations and shifts in technology. The
extensive study on UAS typology presented by [12] covers a variety of classifications, but there is no
consistent and commonly accepted schemed of categorizing UAS. Multiple factors (size, weight, flying
altitude, endurance, range, etc.) and their combinations create endless ways of grouping UAS into
categories (see Figure 3). These characteristics influence the payload carrying capacity, as well as operating
altitude and range [13]. Examples of such classifications can be found in Nex and Remondino [14],
Fahlstrom and Gleason [15], Austin [16], Watts et al. [9] and Zhang and Kovacs [17]. The U.S. Department
of Defense has proposed five groups (with group 1 having micro and mini subdivisions), presented in
Table 1 and depicted in Figure 3. There is an inconsistency in the naming of these groups (Department of
Defense officially uses only numbers), but, after Qi et al. [18], we present the nomenclature commonly
used in the field. The use of large (HALE, MALE) and medium sized (tactical) UAS are very restricted
(almost exclusively to the military) because of high cost and regulatory burdens. Therefore, the focus of
this review is narrowed to systems up to 55 lbs. (~25 kg) that can be legally used in the United States for
civilian purposes.

Figure 3. Classification of UAS according to the Department of Defence.

Recent legislative changes (see Section 4.4), coupled with technological advances and miniaturization
of electronic components, including the sensors, has precipitated a proliferation in the market of
small, lightweight, off-the-shelf devices that belong to the “micro”, “mini”, or “small UAS” categories.
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Although their diversity in capabilities and designs is ever increasing, two main types can be recognized:
fixed wing and multi-rotor UAS (though hybrid systems do exist).

Table 1. UAS classification (according to the Department of Defence), after Qi et al. [18].

Category Weight Altitude Radius Endurance
[kg] [feet ASL] [km] [h]

Micro <2 up to 200 <5 < 1
Mini 2–20 up to 3000 <25 1–2
Small 20–150 up to 5000 <50 1–5

Tactical 150–600 up to 10,000 100–300 4–15
MALE >600 up to 45,000 >500 >24
HALE >600 up to 60,000 global >24

In the context of hydrological applications and wetland mapping, the initial choice of the type
of platform depends on the scope of the particular project. While the nature of the acquired data
depends largely on the onboard sensors (described in Section 3.2), the platform itself plays a critical
role in the success of the remote sensing mission and constrains the types of sensors that may be
deployed and flight planning. Fixed wing aircraft has a distinct advantage for wetland mapping because
their substantially higher endurance affords the ability to cover much large areas than the average
multi-rotor UAS. Fixed wing UAS have been extensively used in land surveying (especially in rural
areas), agriculture and environmental management [19–21]. The higher endurance of fixed wing aircraft
is a consequence of their greater aerodynamic efficiency and higher flight speed. In many applications,
these characteristics also make the aircraft more stable and allows for greater control over the resulting
image quality. Fixed wing UAS have several advantages over the multi rotor UAS (see Table 2), but rotary
wing (or multi-rotor) aircraft still have distinct applications within wetland mapping.

Table 2. Comparison between different features of fixed-wing and multi-rotor UAS.

Fixed Wing Multi Rotor

ad
va

nt
ag

es

longer flight autonomy,
larger areas covered in less time,
better control of flight parameters,
higher control of image quality,
greater stability (better aerodynamic performance
minor influence of environmental conditions),
higher flight safety (safer recovery from power loss),

greater maneuverability,
lower price,
more compact and portable,
easy to use,
higher payload capacity,
ability to hover,
small landing/takeoff zone

di
sa

dv
an

ta
ge

s less compact,
less portable,
higher price,
challenging to fly
larger takeoff/landing site needed

shorter range,
less stable in the wind,

Rotary wing UAS can be divided into subclasses based on the number of rotor blades. The most
common are quadrocopters and hexacopters (four and six rotors, respectively). Due to low prices and
ease of use, the market of small multi-rotor UAS has boomed in recent years. The relatively shorter
endurance of multi-rotor UAS substantially limits the size of the area that can be mapped with one
flight. However, multi-rotors have distinct capabilities that may be important in certain contexts: higher
payload capacity, ability to remain in one place for a longer time and capture data while hovering,
ease of collecting oblique imagery from multiple angles, improved agility and maneuverability that
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may enable measurements in inaccessible places, and vertical take-off and landing that allows for more
flexible deployment and in areas that would be inaccessible with fixed-wing aircraft. Some hybridized
solutions offer the aerodynamic advantages of fixed-wing aircraft with the flexibility of VTOL (vertical
take-off/landing) or STOL (short take-off/landing). While small size fixed wing UAS (e.g., the Sensefly
eBee or Quest UAV Datahawk, see Figure 4) can be launched from the hand, bigger platforms require not
only a relatively large take-off/landing zone, but also additional launching equipment (e.g., a catapult).
We believe these hybrid solutions that combine high endurance and VTOL capability—for example, the
ARCTURUS JUMP series, with the ability to carry heavy payloads—are the future of large scale unmanned
aerial mapping. However, the use of such systems for civilian purposes is restricted in most countries,
including the U.S., by current legislation (see Section 4.4).

Figure 4. Examples of fixed wing UAS: (A) Precision Hawk Lancaster 5; (B) Trimble UX5; (C1) QuestUAV
DATAhawk; (C2) QuestUAV DATAhawk PPK; (D1) senseFly eBee; (D2) senseFly eBee Plus.

3.2. Sensing Payloads

The optimal combination of carrier and sensing payload is an essential element for obtaining valuable
data with UAS-based airborne photogrammetry and remote sensing. While there are an increasing
amount of fully-integrated platforms available (i.e., aircraft and sensor packages), these typically serve
a few specific use cases such as aerial photography and video (equipped with traditional Visual-Band
cameras) or thermal inspection. For applications not served by these integrated offerings, users must
carefully consider the pairing of aircraft and sensor. Fitting a remote sensing payload into the weight,
volume or mounting restrictions of a specific aircraft is often challenging. Luckily, the availability of a
wide variety of UAS-specific sensing payloads has radically increased in recent years. An extensive review
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of advancements in remote sensing instruments can be found in Remondino [22] and further analysis
was published by Colomina and Molina [23]. Here, we aim to summarize the most relevant commercially
available UAS sensor offerings for wetland mapping and hydrological modeling. We focus particularly on
five types of sensors: visible-band (optical), near-infrared (NIR) and multispectral, hyperspectral, thermal,
and laser scanners.

While current market sensor offerings are considerable, it is predicted to expand even faster in
upcoming years. Constant improvements enabled by evolutionary advances in miniaturization result in
new models appearing on the market each month. It is crucial for a potential buyer to be closely watching
those advancements. We expect that this trend will lead to ever smaller, lighter, cheaper, and more capable
sensors in the coming years. These advances should increase deployment flexibility because smaller and
more affordable UAS systems will be able to carry increasingly sophisticated sensor payloads.

3.2.1. RGB (Visible-Band) Cameras

Visible light sensors are capable of capturing imagery perceptible to the human eye. Optical visible
light cameras operate in the approximate wavelength range from 400 to 700 nm [16]. Since the market
of visible range cameras is vast, from mass produced consumer-grade cameras, to professional models,
the UAS manufacturers and designers frequently mount existing models on their aircraft. An example of
such a solution is the Sony ILCE-QX1 (see Table 3 and Figure 5) mounted on the QuestUAV products.

Table 3. Main parameters of some commonly used UAS mounted Visual-Band cameras.

Manufacturer Resolution Weight Speed
and Model [px] [g] [/s]

DJI Zenmuse X7 24 MP (multiple photo sizes) 449 up to 6000
MAPIR Survey3 4000 × 3000 50 * up to 200

PhaseOne iXU-RS 1000 11,608 × 8708 930 up to 2500
Sony ILCE-QX1 5456 × 3632 158 * up to 4000

senseFly S.O.D.A. 5472 × 3648 111 up to 2000

* Without lens.

Figure 5. Some commonly used UAS Visual-Band cameras, listed in Table 3: (A) DJI Zenmuse X7;
(B) MAPIR Survey3 (also avaliable in multispectral option); (C) PhaseOne iXU-RS 1000; (D) Sony ILCE-QX1;
(E) senseFly S.O.D.A.
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Since mapping and environmental monitoring is only one of the range of UAS applications, it is
crucial to know the characteristics of the camera (and the mounting system) to be able to collect useful
data. Most of the off-the-shelf drones are equipped with cameras that are used for filming and aerial
photography and are not recommended for mapping purposes. However, some of the cameras (like DJI
Zenmuse X7, see Table 3 and Figure 5) are successfully used in both the entertainment industry and for
mapping missions. In these cases, the most relevant characteristics of the camera are its image resolution
and speed. Many RGB sensors mounted on UAS are capable of providing high-resolution imagery from
a bird’s eye perspective, as presented in Figure 6. These types of camera are, by far, the most common and
the most affordable monitoring sensors.

Figure 6. An RGB imagery of wetland area captured by Sony NEX-5T camera mounted on Trimble UX5
(see Figure 4). Flight altitude—135 m, data captured 17 February 2017.

These simple cameras realize their environmental mapping and monitoring capabilities through the
use of Structure from Motion (SfM) and Multiple View Stero (MVS) algorithms, described in detail in
Section 4.2. As a result of processing, the RGB imagery can be stitched into orthomosaics [24] but can also
provide 3D information about the area in form of a 3D mesh, and georeferenced products: point clouds and
Digital Surface Models (DSMs). Orthophotos and DSMs are used extensively in wetland monitoring and
mapping (more in Section 5). The shortcoming of the RGB imagery stems from its very essence—since they
capture only the visible spectrum, there is no information about the bare ground under dense vegetation
or below canopy line (see Figure 7). Nevertheless, these cameras serve an important purpose within the
context of environmental monitoring, particularly for the creation of high resolution maps to aid visual
interpretation and inspection of difficult to access or dangerous areas.

3.2.2. NIR and Multispectral Cameras

Sensing beyond the visible wavelengths, especially in the near-infrared (NIR), offers unique capabilities,
particularly when it comes to the characterization of vegetation [25]. There are multiple UAS-suitable cameras
on the market that can capture NIR imagery. Their use is crucial in determining vegetation health [13],
and the calculation of a variety of informative spectral indices. Multispectral cameras differ in number
of bands, spectral range and resolution. As the sensors become more sophisticated (wider spectral range,
more bands), it is more challenging to miniaturize the technology sensor costs rise. Relatively low-cost,
off-the-shelf multispectral cameras have been used with success in a wide variety of environmental mapping
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and monitoring applications (see Section 5). Nebiker et al. [25] compared such a camera with a high end
professional UAS dedicated multispectral sensor and found substantial bias and inter-band correlation in
the low-cost sensor, but nevertheless highlighted the practical utility of such sensors for many applications.
Some of the more commonly used multispectral cameras are shown in Table 4 and on Figure 8.

Figure 7. Processed RGB imagery using Structure from Motion (SfM) techniques. Visible lack of data below the
canopy on dense point cloud (A) and resulting misrepresentation of the canopy structure on a 3D model (B) and
textured 3D model (C).

Table 4. Main parameters of some commonly used multispectral cameras, after Deng et al. [26], updated.

Manufacturer Resolution Pixel Size Weight Spectral Range

and Model [px] [µm] [g] Central Wavelength [nm]
(Band with [nm])

Buzzard 1280 × 1024 5.3 250 Blue: 500 (50)
Camera six Green: 550 (25)

Red: 675 (25)
NIR1: 700 (10)
NIR2: 750 (10)
NIR3: 780 (10)

MicaSense 1280 × 960 3.75 180 Blue: 475 (20)
RedEdge Green: 560 (20)

Red: 668 (10)
Red edge: 717 (10)

NIR: 840 (40)

Parrot 1280 × 960 3.75 71 Green: 550 (40)
Sequoia+ Red: 660 (40)

Red edge: 735 (10)
NIR: 790 (40)

Sentera Quad 1248 × 950 3750 0.17 RGB Red: 655 (40)
Red edge: 725 (25)

NIR: 800 (25)

Tetracam 2048 × 1536 3200 0.09 Green: 520–600
ADC Micro Red: 630–690

NIR: 760–900

Tetracam 1280 × 1024 5.2 700 Blue: 490 (10)
MiniMCA6 Green: 550 (10)

Red: 680 (10)
Red edge: 720 (10)

NIR1: 800 (10)
NIR2: 900(20)



Remote Sens. 2019, 11, 1997 11 of 39

3.2.3. Hyperspectral Cameras

In spite of the large number of uses of low-cost passive imagery sensors—such as RGB and NIR—many
applications require higher spectral fidelity that only multispectral and hyperspectral [27] sensors can
offer. These sensors acquire tens to hundreds of images of very narrow portions of the electromagnetic
spectrum, and so can resolve much subtler spectral variation in targets. Unfortunately, acquisition of
such rich data require sensors that are challenging to miniaturize because of their optics and calibration.
Recent hyperspectral technology developments have been consistently resulting in smaller and lighter
sensors that can currently be integrated in UAS for either scientific or commercial purposes. Some of
them are listed in Table 5. We believe that such sensors may have a role to play in mapping the locations
of particular species, which is not generally possible with coarser spectral resolution measurements,
and which may enable wetland identification.

Figure 8. Some commonly used UAS multispectral cameras: (A) Buzzard Camera six; (B) MicaSense
RedEdge; (C) Parrot Sequoia+; (D) Sentera Quad; (E) Tetracam ACD Micro; (F) Tetracam MiniMCA6.

Table 5. Main parameters of some hyperspectral sensors available for being coupled with UAS, modified
from Adão et al. [27].

Manufacturer Spectral Number Spatial Weight
and Model Range [nm] of Bands Resolution [px] [g]

BaySpec OCI-UAV-1000 600–1000 100 2048 * 272
Brandywine Photonics CHAI V-640 350–1080 256 640 × 512 480
HySpex VNIR-1024 400–1000 108 1024 * 4000
NovaSol Alpha-SWIR microHSI 900–1700 160 640 * 1200
Quest Hyperea 660 C1 400–1000 660 1024 * 1440
Resonon Pika L 400–1000 281 900 * 600
Resonon Pika NIR 900–1700 164 320 * 2700
SENOP VIS-VNIR Snapshot 400–900 380 1010 × 1010 720
SPECIM SPECIM FX17 900–1700 224 640 * 1700
Surface Optics Corp. SOC710-GX 400–1000 120 640 * 1250
XIMEA MQ022HG-IM-LS150-VISNIR 470–900 150+ 2048 × 5 300

* Pushbroom length line.
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3.2.4. Thermal Sensors

Although initially used mostly by the military [28], longwave infrared sensors (hereafter: thermal
sensors) are now widely used for environmental monitoring. Khanal et al. [29] reviewed their use
in precision agriculture and named applications that are essential also for wetland mapping and
monitoring: distribution of soil moisture conditions [30–32], water stress detection [33–35], soil texture
mapping, [36] and plant disease detection [37–39]. There is great potential in the use of thermal sensors for
the indirect detection and mapping of wetlands. For instance, thermal imagery obtained during times
of high vapor pressure deficit and high radiation loads (i.e., bright, dry days) would likely highlight
areas that are cooler than their surroundings due to significant water evaporation. However, under other
meteorological conditions, we might expect that the transpiration of soil water by plants would mask the
thermal manifestation of sub-canopy water presence.Table 6 lists some of the thermal cameras specifically
designed for UAS use, some of which are depicted in Figure 9.

Figure 9. Currently available thermal cameras, listed in Table 6: (A) FLIR T450sc; (B) FLIR Thermovision
A40M; (C) ICI 7640 P-Series; (D) Optris PI400; (E) Pearleye LWIR; (F) Thermoteknix MIRICLE 370 K;
(G) Xenix Gobi-384 (Scientific).

Table 6. Some of the currently available thermal cameras, after Khanal et al. [29], modified.

Manufacturer and Model Resolution
[px]

Weight
[g]

Spectral Band
[µm]

FLIR T450sc 320 ⇥ 240 880 * 7.5–13.0
FLIR Tau 640 640 ⇥ 512 110 7.5–13.5
FLIR Thermovision A40M 320 ⇥ 240 1400 7.5–13.5
ICI 320x 320 ⇥ 240 150 * 7.0–14.0
ICI 7640 P-Series 640 ⇥ 480 127.6 7.0–14.0
InfraTec mobileIR M4 160 ⇥ 120 265 * 8.0–14.0
Optris PI400 382 ⇥ 288 320 * 7.5–13.0
Pearleye LWIR 640 ⇥ 480 790 * 8.0–14.0
Photon 320 324 ⇥ 256 97 7.5–13.5
Tamarisk 640 640 ⇥ 480 121 8.0–14.0
Thermoteknix MIRICLE 370 K 640 ⇥ 480 166 8.0–12.0
Xenix Gobi-384 (Scientific) 384 ⇥ 288 500 * 8.0–14.0

* With housing and lens.

3.2.5. Laser Scanners

With the advent of laser scanning techniques, surveying techniques have been improved by very high
quality terrestrial and airborne lidar data [40–42]. Most laser scanners (lidar) employed to characterize
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topography, bathymetry, and wetlands vegetation are large, heavy, and mounted exclusively on manned
aircraft. The market of miniaturized lidar sensors has grown very rapidly and constant technological
advancements are improving the quality of data obtained by these sensors. Lang et al. [43] anticipate
that lidar sensor deployment will become more common on UAS. This opens unprecedented opportunity
for replacing manned airborne lidar for wetland mapping since the fundamental characteristics of lidar
data are largely unaffected by the carrying platform [43]. This means that well-developed and familiar
processing and analytical techniques can be brought to bear on these data sets. The main challenge in
UAS lidar application lies in significant trade-offs between performance and the size or cost of the lidar
sensor, or the effect of flight dynamics on the measurement process [44]. Developing small lidars that
can be mounted on UAS necessitates sacrifices in the size, weight and energy source for the lidar [1].
These limitations typically reduce the effective sensing range of the sensor, but this can be somewhat
overcome by the fact that UAS can often fly much closer to the target.

The potential of lidar data for wetland extent determination lies in the possibility of obtaining
not only the surface information, but also 3D representation of the ground surface underneath [45].
It has been proven that the use of lidar data yields better accuracy in wetland mapping than photo
interpretation—Hogg and Holland [46] achieved (84%) accuracy in wetland delineation using lidar data
compared to colored infra-red imagery (76%). While the cost of these systems is much higher than other
potential payloads, Snyder et al. [47] show, however, a variety of economic benefits that can be achieved
by improving topographic maps using lidar that exceed data acquisition costs. Table 7 lists some of the
lidar sensors specifically designed for UAS use, some of which are depicted in Figure 10.

Figure 10. Some commonly used lidar sensors for UAS, listed in Table 7: (A) Riegl VUX-1UAV; (B) Riegl
VUX-240; (C) Routescene UAV LidarPod; (D) Velodyne HDL-32E; (E) Velodyne PUC VLP-16; (F) YellowScan
Mapper II; (G) YellowScan Surveyor.
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Table 7. Main parameters of some lidar sensors designed for UAS.

Manufacturer Range Weight Field of Laser Accuracy
and Model [m] [g] View [�] Class [mm]

Riegl VUX-1UAV 3–350 3500 330 1 10
Riegl VUX-240 5–1400 3800 ±37.5 3R 20
Routescene UAV LidarPod 0–100 1300 (H)41, (V)360 1 (XY) 15 * (Z) 8 *
Velodyne HDL-32E 80–100 1300 (H)360, 1 20

(V)+10 to �30
Velodyne PUC VLP-16 0–100 830 (H)360, (V)±15 1 30
YellowScan Mapper II 10–75 2100 100 1 (XY) 150 (Z) 50
YellowScan Surveyor 10–60 1600 360 1 50

(H) Horizontal, (V) Vertical, * with RTK.

4. UAS-Based Spatial Data

This section will focus on describing capabilities and best practices for UAS data acquisition
(Section 4.1), raw processing processing (Section 4.2), cost and time effectiveness of UAS use (Section 4.3),
and the regulatory environment for UAS in the United States (Section 4.4).

4.1. Data Acquisition Process

4.1.1. UAS Operation and Control

Options for controlling the flight of an unmanned aircraft span a spectrum from complete remote
control to fully autonomous flight, with most practical applications employing both to some extent:

• Ground control: also known as Remotely Piloted Vehicles (“RPVs”), this control option requires
constant input information from an operator. A ground control station (GCS) is a control center located
on land or sea that provides aircraft status information (location, orientation, systems information,
etc.) and accepts and transmits control information from the operator.

• Semi-autonomous: this control method is perhaps the most common and has an operator manually
controlling the aircraft during pre-flight, take-off, landing, and a limited set of other maneuvers,
but reverts to autopilot enabled autonomous flight for the majority of the mission. For example,
the vehicle may be programmed to fly between specified waypoints once in-flight.

• Fully autonomous: here control relies on controlling the unmanned vehicle only by the on-board
computer without human participation. It means no human input is necessary to perform an objective
following the decision to take-off. In this mode, the aircraft must have the capability to assess its
condition, and status as well as make decisions affecting its flight and mission.

4.1.2. Photogrammetric Flight Planning

The mission (flight and data acquisition) is normally planned prior to deployment, off-site, and with
the aid of dedicated software. Although available software packages have various interfaces and different
mission customization levels, the mapping mission is always defined by indicating the area of interest
and geometric flight parameters. Sometimes, sensor specifications need to be input manually, but most
flight planning platforms have predefined protocols for particular sensor systems, particularly those that
are well-integrated with the airframe. In order to plan a successful mapping mission, which ensures the
quality of the output data, several principles of traditional photogrammetric flight planning need to be
followed. Longitudinal and transverse overlap of images needs to be maintained (60–80% in at least one
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of them, see Figure 11) and the Ground Sampling Distance (GSD: distance between two consecutive image
centers) needs to be determined. The GSD is determined by the flight altitude, focal length, and angle
of view of the camera. Geometrical flight parameters vary according to the goal of the flight: missions
for detailed mapping require high resolution, high overlap and low flying altitude resulting in small
GSDs, but quick flights for emergency surveying and management prioritize flight time at the expense of
resolution [14]. For mapping missions, the autonomous or semi-autonomous mission is generally planned
to follow parallel lines and each change of flight trajectory will be marked as a “waypoint”. The image
network quality is strongly influenced by the typology of the performed flight [14]: it is very difficult to
ensure the imagery overlap and regular geometry of acquisition in a manual mode, so semi-autonomous
operation is most common. Note that these considerations are not unique to the choice of a fixed or rotary
wing aircraft, but those choices will imply range and maneuverability constraints that will determine
available flight plans.

Figure 11. Schematic overview of a photogrammetric flight with minimum overlap values.

Flight navigation, but also image orientation for processing purposes, are possible thanks to onboard
inertial measurement units (IMU) and GNSS/INS positioning systems. Whether the sensor is fully
integrated with the aircraft and navigation electronics or not, measurements (e.g., images) taken by
onboard sensors can inherit the geolocation and aircraft attitude information from the navigation unit.
This simple “geotagging” solution (see Figure 12) is ubiquitous, but yields relatively low positional
accuracy depending on the quality of the GNSS/INS position unit, the IMU, and conditions affecting
signal strength (e.g., weather). More precise referencing can be achieved with two methods: using Ground
Control Points (GCPs) or incorporating Real Time Kinematics (RTK) or Post Processing Kinematics (PPK)
devices. The GCP approach relies on post-processing of image mosaics to more accurately georeference
them, whereas RTK technology enables more precise positioning at the time of flight/data collection. It is
worth mentioning that several methods of direct georeferencing without the use of GCP or RTK/PPK
technology have been proposed [48].

• Ground Control Points (GCPs)
Ground control points (GCPs) are points on the surface of the Earth of a precisely known location.
GCPs are tied in during data processing to georeferenced images from a project and convert ground
coordinates of the points to real world locations. They need to be distributed evenly throughout the



Remote Sens. 2019, 11, 1997 16 of 39

mapping area before the flight, and measured with high precision techniques such as differential
GPS. The precision and accuracy of the data processed with the use of GCPs is very high—on the
order of couple of centimeters [49,50]. In the context of wetland mapping and monitoring, the use of
GCPs has several shortcomings. First, actually deploying and locating the targets that will serve as
GCPs may not be possible in wetland environments due to access issues. Moreover, dense vegetation
can make it impossible to identify the targets within the acquired imagery.

• Real Time Kinematics (RTK) and Post Processing Kinematics (PPK)
RTK-enabled drones use differential GPS measurements to improve accuracy. The base station (or the
Virtual Reference Station—VRS) constantly provides correction and calibration of the UAS position
data (see Figure 13). Each base station measurement is paired in real time with the measurement
of the GPS on board the UAS. Successive GPS measurements at the base stations are paired with
GPS measurements made by the drone. This provides a mechanism for substantially reducing
the errors common between the two measurements (usually resulting in errors on the order of
a centimeter or less for the aircraft position relative to the base station). If the UAS operates in the
RTK mode, these corrections are applied real-time, requiring an uninterrupted connection between
the drone and the base stations throughout the survey. This is hard to achieve in all survey areas,
where building, trees, hills can be obstacles in a signal exchange. This limitation is bypassed by using
a Post-Processed Kinematic (PPK) solution, in which the base station and the UAS collect the location
data independently and the pairing is executed during the data processing stage. The less accurate
data of the GPS onboard the UAS is corrected using the more accurate base station data, resulting in
more precise geotags of aerial imagery or other survey data.

Figure 12. Comparison of georeferencing based on GCPs and imagery geotags.
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Figure 13. Achievable absolute accuracy using Real Time Kinematics or Post Processing Kinematics-enabled
and Standalone UAS.

Equipment choices (platform, auto-pilot and GCS) fundamentally impact the quality and reliability of
the final result: low-cost instruments can be sufficient for small areas, low altitude flights, or in applications
with less strict needs for locational precision, while more expensive devices must be used for long
endurance flights over wide areas. Generally, in the case of light weight and low-cost platforms, a regular
overlap among collected image cannot be ensured due to the strong influence of wind, piloting capabilities
and GNSS/INS quality, all randomly affecting the attitude and location of the platforms during the flight.
Thus, higher overlaps, with respect to flights performed with manned vehicles or very expensive UAVs,
are usually necessary to counteract these problems. Wind can greatly affect flight and image acquisition,
particularly when interfering with the proper aiming and stability of the sensor system. High winds are
not uncommon over coastal wetland areas, and these may impose considerable challenges to flight control
and maneuvering. Lighter aircraft and those air frames with larger surfaces tend to be more affected
by winds. Recent developments in platform control systems, including improved IMUs, have allowed
successful data acquisition campaigns under these challenging scenarios. In addition, the introduction of
weatherproof systems has extended data collection capabilities under a variety of environmental conditions.
Data acquisition and the quality of the data acquired by a UAS also can be affected by other atmospheric
conditions, especially atmospheric effects such as fog and high aerosol concentrations. However, due to the
relatively thin atmosphere between the target and the sensor, data derived from UAS are less vulnerable
to atmospheric effects than airborne systems flying at higher altitudes. This is a particular advantage
for UAS measurements in context where spectral measurement precision is important. While the larger,
heavier, more expensive instruments common for orbital or airborne flight often tout much higher spectral
calibration accuracies, this may be a moot point when atmospheric correction procedures introduce
substantial uncertainty. Therefore, it may be possible to obtain highly accurate spectral measurements
with smaller, cheaper sensors onboard UAS.
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4.2. Surface Reconstruction and Structure from Motion (SfM)

The concept of combining blocks of aerial images with the aim of creating georeferenced spatial data
are a principal of traditional photogrammetry. Traditionally, the key components of the process included
generating digital terrain models (DTMs or DEMs) using photogrammetric [51–54] and differential
global positioning system (dGPS) [55] data. As described in Section 2, most of these techniques still
require expensive equipment and professional knowledge to process data and improve its quality [56].
Development of UAS systems equipped with consumer grade digital cameras provided an opportunity
for very low cost spatial data acquisition. Since the geometry of the photograph is not suitable for
measurements, and traditional photogrammetry requires the use of photogrammetric, pre-calibrated
cameras, an alternative processing method was needed in order to stitch, georeference and orthorectify
the acquired imagery. The computer vision community developed such a method almost 40 years ago:
Structure from Motion (SfM) [57] and Multi-View Stereo (MVS) [58], which revolutionized low-cost data
acquisition in wetland mapping [1] and in other environmental applications [59,60].

SfM-MVS has the goal of retrieving 3D information from 2D imagery [60]. The details of the
process have been described by multiple authors [56,59,61–66]. The basic principle relies on the
identification of common points across a sequence of 2D photographs taken from different angles, and
recovering geometric information from the view parallax [56]. Since any particular common point
must be present and identified within multiple pictures, it is necessary to have a sufficient overlap
between consecutive photographs. It alleviates the problem of “shadow zones” when capturing data
from a stationary sensor (Figure 14). The 3D scene consists of a point cloud of these distinct points
generated by an automatic feature-detection-and-description algorithm called SIFT (Scale Invariant Feature
Transform) [67] followed by bundle block adjustment [65]. These processes result in a scale invariant
sparse point cloud (see Figure 15B). Although SIFT is the most commonly feature extraction algorithm
used in UAS processing software packages, different approaches, i.e., SURF, KAZE, AKAZE, ORB, and
BRISK have been successfully used for image matching for mapping purposes [68–70]. In order to increase
the density of the point cloud, a conceptual extension of stereo photogrammetry with the use of multiple
images (MVS) instead of stereo-pairs, is implemented [71], resulting in the generation of a denser point
cloud (see Figure 15C). Finally, the dense point cloud can be interpolated into an orthomosaic (using
values from vertices colors) and DSM (using the 3D locations, in applied coordinate system). Figure 15E,F
shows the final result, a DSM and an orthophoto, respectively. There is a critical difference between use of
SfM for geomatics applications (i.e., DTM creation) and 3D object modeling. Namely, the need that final
image products be georeferenced—placed within a known vertical and horizontal coordinate system [63].
The method of georeferencing (based on geotags of the photographs, GCPs or using RTK/PPK technology)
needs to be determined before the flight mission. Details of this process are described in Section 4.1.2.
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Figure 14. A schematic illustration of three methods of producing high-resolution digital topography:
A. Airborne lidar (light detection and ranging), B. Terrestrial lidar, C. UAS-based structure from Motion
(GPS—global positioning system; IMU—inertial measurement unit), modified from Johnson et al. [72].

An overview of the strengths and weaknesses of different algorithms used for multi-image SfM is
discussed by Smith et al. [62] and Oliensis [73]; however, most commercially available software packages
for this purpose utilize procedures optimized for high accuracy and efficiency.
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Figure 15. An example UAS image processing workflow. (A) photo capturing positions and image overlap;
(B) sparse point cloud; (C) dense point cloud; (D) mesh with indicated positions of Ground Control Points;
(E) Digital Surface Model; (F) orthomosaic.

4.2.1. Photogrammetric Processing Software

The development of SfM algorithms created new possibilities for UAS imagery processing. While the
majority of professional photogrammetric software packages, designed initially for processing airborne or
satellite imagery, are now able to process UAS imagery, there are distinct advantages for software solutions
that are dedicated to UAS image data alone. One of the main strengths of the SfM-MVS approach is its



Remote Sens. 2019, 11, 1997 21 of 39

flexibility in the type, number, scale, and positioning of input images that it can handle in the workflow [61].
An additional advantage of SfM algorithms over conventional photogrammetry from stereo-pairs is that,
in addition to recreating the 3D surface objects or terrain, they recover camera parameters (interior
orientation) and positions (exterior orientation). The particular steps of the processing vary based on the
software, but the general scheme, based on the SfM-MVS algorithms, remains the same. Figure 16 shows
the general pipeline for RGB imagery acquisition and processing.

Figure 16. Typical acquisition and processing pipeline for RGB imagery with the use of SfM-MVS algorithms.

It is not uncommon that the UAS manufacturer would offer a bundle with flight planning and
post-fight imagery processing software (e.g., Trimble provides complete solutions). Advantages of such
complete solutions include well-integrated workflows, and technical support. However, these solutions
are often considerably less affordable and have limited flexibility in using alternative aircraft and sensor
combinations. Luckily, there is a wide variety of platform-independent software packages, across a range
of price points (including free and open source) that allow for flexible and adaptable workflows. The
current market leader is Pix4D —which offers a suite of software products that use photogrammetry
and computer vision algorithms to transform both RGB and multispectral images into 3D maps and
models. Agisoft Metashape (formerly Agisoft Photoscan Professional) is also widely used in a research
community. Other proprietary solutions include Bentley ContextCapture, RealityCapture, 3DF Zephyr,
Correlator 3D,3Dsurvey, Menci APS, Autodesk ReCap 360, Icaros OneButton, Drone2Map for ArcGIS +
Ortho mapping in ArcGIS Pro, Trimble Inpho UASMaster, Drone Mapper, Racurs PHOTOMOD UAS and
open source solutions: WebODM and MicMac. The software packages differ in price and capabilities. Some
of them, like Autodesk ReCap Pro or Pix4D Mapper, offer cloud-based processing, which is important
when taking into account the massive computational requirements of SfM-MVS algorithms applied to
very large image collections. From standalone licences, monthly and yearly subscription to pay-by-project
solutions, the market of UAS imagery processing software is currently expanding at a hard-to-follow speed.
On the other hand, acceptable results can be obtained with a wide variety of packages and the choice
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should be dictated by budgetary consideration, compute infrastructure, project requirements, integrability
with existing workflows and data needs, and the dictates of the chosen aircraft-sensor combination.

4.2.2. Processing Outputs

The algorithms described above lead to the creation of multiple geospatial products (see Figure 15
and blue box on Figure 16). Primarily, SfM-MVS produces a dense point cloud. The accuracy and precision
of which is comparable with point clouds derived from terrestrial or airborne lidar [74]. From this dense
point cloud, the following products can be derived:

• Orthomosaic—several blending modes (for example, assigning a raster color that represents the
weighted average value of all pixels from individual photos) can be used for creating a georeferenced
orthophotomap. The result looks like an aerial image consisting of all the individual pictures stitched
together but is geometrically correct and can be used as cartographic material.

• Digital Surface Model (DSM)—is created by interpolating the elevation value of the raster cells
based on the points that are located within this cell. It is crucial to understand that the product of
processing RGB imagery can create a Digital Surface Model, not the bare-earth DEM (see Figure 7).
That is to say, whereas lidar point clouds are often processed to remove canopy returns that is not
possible with DSM.

• 3D Mesh—is a triangulated irregular network created by connecting the vertices of dense point cloud
(see Figure 15, D) that can also be exported with texture and viewed as colored 3D model.

Orthomosaics and DSMs are crucial products for hydrological modeling and in wetland mapping
applications. Terrain representation plays a crucial role in extracting hydrological information [75] and its
accuracy substantially impacts hydrologic predictions [76]. Orthophotos and aerial imagery have been
a source for wetland delineation for nearly 50 years [1], and are no less useful nowadays. An extended
review of the use of the aforementioned spatial data can be found in Section 5 of this review.

4.3. Cost and Time Effectiveness

A comparison of the cost effectiveness of UAS is a challenging endeavour because it invariably fails
to account for the many advantages of the UAS data acquisition. That is, while it is possible to compare
production costs of very high resolution orthophotos from UAS and airborne systems, such accounting
does not reflect the additional value of being able to carry novel sensors, being able to rapidly resurvey
a study area, or the value of being able to recover 3D surface information [5]. Nevertheless, several studies
have attempted to quantitatively evaluate UAS cost advantages. Carrivick et al. [61] cast UAS-based
Structure from Motion in a broader comparison with traditional surveying methods: total station, dGPS,
airborne lidar and traditional photogrammetry (see Figure 17). Like the UAS, each of these technologies
has advantages and disadvantages regarding technological, operational and economic factors [13].

The versatility of the sensors that can be mounted on the UAS make them unique and hard to classify
in a cost-effectiveness manner. A separate comparison would need to be made for each combination of
sensor and platform. Bakuła et al. [77] examined the effectiveness of UAS-based lidar for levee monitoring.
Thiel and Schmullius [78] compared photograph based point cloud accuracy with an airborne lidar and
observed high match between these two sources, and Wallace et al. [79] assessed the accuracy in favor of
airborne lidar. After a detailed comparison of the cost, time consumption and accuracy of UAS data in
comparison to traditional surveying methods, Fitzpatrick [80] demonstrated that UAS methods cost less,
take less time, and are as accurate in all but terrestrial lidar case.

Utilizing UAS for data acquisition has three unique advantages:

• low initial investment cost;
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• low mobilization cost;
• decreased time required for data acquisition.

In addition to cost and time effectiveness, Manfreda et al. [5] highlight the UAS ability to collect data
in cloudy or hazy conditions that would otherwise obscure satellite retrieval. The low time and resource
requirements for UAS deployment make them the most flexible of the data acquisition platforms and
provide near real-time capabilities that are required in many environmental applications.

Figure 17. Comparison of digital survey methods with regard to financial cost, maximum possible speed,
spatial coverage, resolution, and accuracy; after Figure 2.7 in Carrivick et al. [61]. dGPS—differential
Global Positioning System, GNSS—Global Navigation Satellite System, SfM—Structure from Motion,
MVS—Multiple View Stereo. * Photogrammetry and SfM-MVS values are completely dependent on survey range.

These unprecedented spatiotemporal advantages of UAS do not come without limitations in
operations or data processing. These are scrutinized by Whitehead and Hugenholtz [81] in their review
paper. In addition to the already described shortcomings of UAS-collected RGB imagery (variable
illumination, irregular resolution due to variable flight altitude, image blur caused by the motion of
the platform, etc.), other shortcomings of UAS can be noticed:

• challenges for acquiring and processing data over large spatial scales (legal and technological);
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• repeatability depends on factors outside of the control of the surveyor;
• more affordable solutions (SfM from RGB sensors, multispectral data) limit the application range.

In order to address these shortcomings, best practices in mission and fight planning, sensor configuration,
data collection, ground control, image processing and analytics [5] must be implemented to ensure the
final quality of the processed data.

4.4. Legal Constraints

The rapid development of UAS technologies in the last couple of decades has resulted in a boom
in the drone market, and unmanned vehicles have rapidly populated the airspace. At first, regulatory
bodies were applying manned aircraft rules to UAS, but quickly started developing new standards and
laws all over the world. In the United States, the Federal Aviation Administration (FAA) introduced,
in August 2016, a new set of rules, known as “Part 107” aiming for safe incorporation of UAS into the
National Airspace System [82]. Under this guidance, civilian use is restricted to unmanned vehicles up
to 55 lbs. (~25 kg) in weight with mandatory registration for those between 0.55 to 55 lbs. (~0.25 to
~25 kg). The recreational use of drones remains the least regulated, while commercial drone pilots need
to obtain a remote pilot certification which requires passing a knowledge test every two years (for those
pilots who do not hold at least a manned aircraft sport license). There are important rules restricting
in which classes of airspace UAS may be flown [83]. With regards to wetland monitoring in particular,
and environmental observation in general, important FAA rules constrain the extent of interrogable areas.
For instance, the size and flight altitude restrictions (up to 400 ft, ~122 m AGL) limit the area that can be
covered by one flight. Furthermore, the UAS operator must maintain visible contact with the aircraft for
the flight duration, constituting the biggest obstacle to the mapping of large areas. Although waivers can
be granted by FAA which approve certain operations of aircraft outside these limitations [84], some of
them, like § 107.39—“Operation Over People” and § 107.31—“Visual Line of Sight Aircraft Operation” are
nearly impossible to obtain. The latter restriction has been the focus of a wide variety of projects aiming to
improve unmanned traffic management practices [85] and detect and avoid capabilities [86]. The 2018
changes to part § 107.33—“Visual” observer allow for Extended Visual Line of Sight (EVLOS) flights.
In EVLOS operations (see Figure 18), the remote pilot in command may not have the drone in visible
sight at all times, but relies on one or more remote observers to keep the it in visual sight at all times [87].
This development enables more efficient large scale mapping and mapping within obstacle-rich areas.

Across the globe, regulations regarding UAS use differ greatly, spanning from very restrictive
in countries who favor the safety-first approach to more permissive, supporting development of new
technologies. Favorable regulations have aided the US, Europe, and China to become the largest markets
in the world for commercial drone use [88]. Regulations in Europe vary from country to country (similarly
to the patchwork of state-level legislation in the US). In China, the use of UAS is spatially restricted to
airspace that is not controlled by the military (which governs over a half of national airspace). Although the
level of restrictiveness vary in national laws worldwide, there are common elements of regulation: pilot’s
license, aircraft registration, restricted zones, and insurance [88]. The requirements take into account UAS
mass, flight altitude, type of use and sometimes pilot licence level.

Because the national UAS laws are constantly reevaluated and changed frequently (almost always to
a more permissive approach), it is expected that, in a couple of years, operators will be able to fly in new
locations and for new application cases.



Remote Sens. 2019, 11, 1997 25 of 39

Figure 18. Flights in the visual range (VLOS), extended visual line of sight (EVLOS) and beyond visual line
of sight (BVLOS).

5. Applications for Wetland Mapping and Hydrologic Modeling

The proliferation of UAS technology has impacted a wide-variety of application areas and research
domains. In this section, we provide an overview of some of the seminal work on state-of-the-art UAS
applications in hydrological modeling and wetland mapping. While most of the analyzed publications
concern wetland areas, review also includes related environmental applications with the strong potential
for use in wetland mapping or hydrological modeling. A number of studies have had the specific aim
of using UAS to delineate wetlands. Among those, many studies focused on identifying and classifying
wetland vegetation using Object-Based Image Analysis [20,89–93]. OBIA was discovered to be superior
to pixel-based classification by Pande-Chhetri et al. [92]. UAS imagery has also been demonstrated to
be suitable for species distribution quick mapping [94], as well as for training and validating satellite
imagery [90]. Novel techniques for enhancing OBIA have been developed which take advantage of
the unique characteristics of UAS data [91]. The versatility of UAS payloads facilitate multi-sensor
approaches to environmental monitoring. Sankey et al. [95] fused data gathered by hyperspectral
and lidar sensors obtained by UAS for individual plant species identification and 3D characterization;
Wigmore et al. [96] mapped surface soil moisture in Andean wetlands using thermal and multispectral
imagery, and Berni et al. [97] showed that UAS-based thermal and multispectral imagery yielded
comparable estimates to the products of traditional manned airborne sensors.

Importance of the resolution of terrain data for performance of hydrological models has been studied
by many [98–103]. The need for very fine scale terrain models for testing the performace of the models
triggered the use of UAS for terrain data collection. Besides the direct use of UAS generated products for
testing the models, they can also be used for parametralization, similar to the use of airborne lidar [104].
A novel method of updating the lidar DEM with UAS derived DSM has been recently developed [105].

These and other UAS uses in hydrological and environmental studies with their respective main
objectives and conclusions, as well as the type of the UAS platform and sensor used, are compiled in
Table 8.
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Table 8. Compilation of hydrological and environmental studies presenting their respective main objectives
and conclusions and UAS type and sensors used in each case. F—fixed wing, R—rotary wing, V—visible
range, T—thermal, M—multispectral, H—hyperspectral, L—lidar.

Reference Objective Main Conclusions
Type Sensor Used
F R V T M H L

Wigmore et al. [96] Map surface soil
moisture content in
Andean wetlands using
UAS based multispectral
imagery to better
understand controls and
impacts on its observed
spatial variability within
these systems.

UAS can provide reliable
sub-metre estimates of surface
soil moisture and provide
unique insights into spatially
heterogeneous environments.

R T M

Biggs et al. [89] Coupling UAS and
hydraulic surveys to
study the geometry and
spatial distribution of
aquatic macrophytes.

The aerial surveying techniques
can be used to efficiently
estimate vegetation abundance,
surface area blockage factor and
also to visualise flow through
patch mosaics, enabling targeted
management of
aquatic vegetation.

R V

Gray et al. [90] Classification of
estuarine wetlands based
on WorldView-3 and
RapidEye satellite
imagery, using UAS
imagery to assist training
a Support
Vector Machine.

UAS can be highly effective in
training and validating satellite
imagery. Within a fixed budget,it
allows much larger training and
testing sample sizes. The UAS
accuracy is similar to
field-based assessments.

F V

Liu and
Abd-Elrahman [91]

Testing approach
seamlessly integrating
multi-view data and
object-based
classification of wetland
land covers.

Multi-view OBIA (MV-OBIA)
substantially improves the
overall accuracy compared with
traditional OBIA, regardless of
the features used for
classification and types of
wetland land covers. Two
window-based implementations
of MV-OBIA both show potential
in generating an equal if not
higher overall accuracy
compared with MV-OBIA at
substantially reduced
computational costs.

F V
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Table 8. Cont.

Reference Objective Main Conclusions
UAS Sensor Used
F R V T M H L

Sankey et al. [95] A fusion method for
individual plant species
identification and 3D
characterization at
submeter scales based on
UAV lidar and
hyperspectral imagery.

UAS lidar characterized the
individual vegetation canopy
structure and bare ground
elevation, whereas the
hyperspectral sensor provided
species-specific spectral
signatures for the dominant and
target species at study area. The
fusion of the two different data
sources performed better than
either data type alone in the arid
and semi-arid ecosystems with
sparse vegetation.

R H L

Tang et al. [106] Investigation of the effect
of the spatial and temporal
variability of riverbed
topography and riverbed
hydraulic conductivity on
predictions of hydraulic
states and fluxes and to
test whether data
assimilation based on the
ensemble Kalman filter
can better reproduce
flood-induced changes to
hydraulic states and
parameters with the help
of riverbed topography
changes recorded with
an unmanned aerial
vehicle (UAV) and
through-water
photogrammetry.

Updating of riverbed hydraulic
conductivity and aquifer
hydraulic conductivity based on
ensemble Kalman filter and
UAV-based observations of
riverbed topography transience
after a major flood event strongly
improve predictions of postflood
hydraulic states—the RMSE was
reduced by 55%.

F V

Li et al. [94] Assessment of the utility
of UAV-borne
hyperspectral image and
photogrammetry derived
3D data for wetland
species distribution
quick mapping.

The utility of UAV-borne
hyperspectral and
photogrammetry-derived 3D
data help to characterize and
monitor wetland environment.
UAS offers a solution for detail
species survey of wetland area in
a relatively low cost of time
and labor.

R V H
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Table 8. Cont.

Reference Objective Main Conclusions
UAS Sensor Used
F R V T M H L

Pande-Chhetri et al.
[92]

Comparison of
classification methods for
wetland vegetation based
on UAS imagery.

The use of OBIA of high spatial
resolution (sub-decimeter) UAS
imagery is viable for wetland
vegetation mapping.
Object-based classification
produced higher accuracy than
pixel-based classification.
Discadvantage for OBIA is
a great amount of time and
efforts spent on scale parameter
selection or post-classification
refinement for an object-based
approach with
expert knowledge.

F V H

Petrasova et al. [105] Updating lidar-based
DEM with UAS-based
DSMs for overland flow
modeling using fast and
effective technique to
merge raster DEMs with
different spatial extents
by blending the DEMs
along their overlap using
distance-based
weighted average.

The novel approach based on
spatially variable overlap width
improves preservation of subtle
topographic features of the
high-resolution DEMs while
ensuring smooth transition. The
two case studies demonstrated
the importance of smooth
transition for modeling water
flow patterns while capturing
the impacts of microtopography.

F V

Senthilnath et al. [19] Evaluation of
performance of proposed
spectral-spatial
classification methods for
crop region mapping and
tree crown mapping of
images acquired
using UAV.

UAV images obtained using the
two UAV platforms were used to
demonstrate the performance of
the proposed algorithm. From
the obtained results, it was
concluded that the proposed
spectral-spatial classification
performs better and was more
robust than the other algorithms
in the literature.

F R V

Boon et al. [107] Assessing if the use of
UAV photogrammetry
can be used to enhance
the wetland delineation
classification and
WET-Health assessment.

UAV photogrammetry can
significantly enhance wetland
delineation and classification but
also be a valuable contribution to
WET-Health assessment.

R V
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Table 8. Cont.

Reference Objective Main Conclusions
UAS Sensor Used
F R V T M H L

Husson et al. [20] Comparison of Manual
Mapping and Automated
Object-Based Image
Analysis of
Non-Submerged Aquatic
Vegetation

Automated classification of
non-submerged aquatic
vegetation from true-colour UAS
images was feasible, indicating
good potential for operative
mapping of aquatic vegetation.

F V

Jeziorska et al. [108] (1) Assessment of the
suitability of digital
surface models (DSMs)
produced by sUAS
photogrammetry for
overland flow simulation
in the context of precision
agriculture applications,
(2) Development of
a workflow for overland
flow pattern simulation
using high spatial and
temporal resolution
DSMs derived from
sUAS data, and (3)
Investigation of the
differences between flow
patterns based on sUAS
derived DSMs and lidar
based DEMs.

(1) sUAS derived data can
improve the quality of the flow
pattern modeling due to the
increased spatial and temporal
resolution. It can capture
preferential flow along tillage
that is represented by capturing
the changing microtopography.
(2) Due to the high resolution of
obtained data, vegetation
significantly disrupts the flow
pattern. Therefore, densely
vegetated areas are not suitable
for water flow modeling.
(3) Overland water flow
modeling based on data from
airborne lidar surveys is suitable
for identifying potentially
vulnerable areas. sUAS based
data, however, is needed to
actually identify and monitor
gully formation.

F V

Wallace et al. [79] Investigation of the
potential of UAS based
airborne laser scanning
and structure from
motion (SfM) to measure
and monitor structural
properties of forests.

Although airborne laser
scanning is capable of providing
more accurate estimates of the
vertical structure of forests across
the larger range of canopy
densities found in this study,
SfM was still found to be an
adequate low-cost alternative for
surveying of forest stands.

R V L
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Table 8. Cont.

Reference Objective Main Conclusions
UAS Sensor Used
F R V T M H L

Capolupo et al. [109] Introduce and test
an innovative approach
able to predict copper
accumulation points at
plot scales, using
a combination of aerial
photos, taken by drones,
micro-rill network
modelling and wetland
prediction indices usually
used at catchment scales.

The DEM obtained with
a resolution of 30 mm showed
a high potential for the study of
micro-rill processes and
Tpographic (TI) and
Clima-Topographic (CTI) indices
were able to predict zones of
copper accumulation at
a plot scale.

R V

Tamminga et al. [110] Assessing the capabilities
of an UAS to characterize
the channel morphology
and hydraulic habitat
with the goal of
identifying its
advantages and
challenges for river
research and
management.

By enabling dynamic linkages
between geomorphic processes
and aquatic habitat to be
established, the advantages of
UAVs make them ideally suited
to river research
and management.

R V

Wan et al. [93] Monitoring the invasion
of Spartina alterniflora
using very high
resolution UAS imagery.

Imagery can provide details on
distribution, progress, and early
detection of Spartina alterniflora
invasion. OBIA, object based
image analysis for remote
sensing detection method, can
enable control measures to be
more effective, accurate, and less
expensive than a field survey.

R V H

Zarco-Tejada
et al. [111]

Detect water stress based
on Fluorescence,
temperature and
narrow-band indices
acquired from
a UAV platform.

The research proves feasibility of
thermal, narrow-band indices
and fluorescence retrievals
obtained from
a micro-hyperspectral imagery
and a light-weight thermal
camera on board small UAV
platforms for stress detection in
a heterogeneous tree canopy
where very high resolution
is required.

F T H
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Table 8. Cont.

Reference Objective Main Conclusions
UAS Sensor Used
F R V T M H L

Laliberte et al. [21] Develop a relatively
automated and efficient
image processing
workflow for deriving
geometrically and
radiometrically corrected
multispectral imagery
from a UAS for the
purpose of
species-level rangeland
vegetation mapping.

Comparison of vegetation and
soil spectral responses for the
airborne and WorldView-2
satellite data demonstrate
potential for conducting
multi-scale studies and
evaluating upscaling the UAS
data to larger areas.

F M

Berni et al. [97] Generate quantitative
remote sensing products
by means of an UAS
equipped with
inexpensive thermal and
narrowband
multispectral imaging
sensors and compare
them to the products of
traditional manned
airborne sensors.

The low cost and operational
flexibility, along with the high
spatial, spectral, and temporal
resolutions provided at high
turnaround times, make this
platform suitable for a number of
applications, where time-critical
management is required.
The results yielded comparable
estimations, if not better,
than those obtained by
traditional manned
airborne sensors.

R T M

While the above listed studies are selective in their application, they are sufficiently diverse to
illustrate many of the major benefits and challenges currently associated with the use of small UAS for
wetland mapping and monitoring purposes. They also provide a good snapshot of the present state
of the industry. Currently, UAS applications in wetlands are heavily biased towards photogrammetric
applications. With the unprecedented pace of platform and sensor development in the last decade, it is
predicted that the continued evolution will extend the range of wetland related applications for which
small UAS are suitable. Recent advances in miniaturization of the lidar sensors opened new avenues for
wetlands and hydrology related research, including fusion of multiple sensors. Constant improvements
in hardware and technologies leave room for improvements in already established methods and leaves
opportunities for developing new algorithms. The main challenge is not the data acquisition, but the
automation of analysis and interpretation of the processing products. It is evident that wetland related
UAS research relies heavily on technology that is being improved by other fields, driven not only by the
academia, but also by the UAS industry. For researchers interested in developing new methods based on
UAS spatial data, it is crucial to follow the UAS market very closely. On the other hand, the hindering
factor for research and development is still the legislation preventing testing new applications. Researchers
should be vigilant about the anticipated changes in UAS laws in the upcoming years and use the more
permissive regulations to expand the studies.
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6. Discussion and Conclusions

The advent of the use of UAS for scientific purposes was triggered by multiple factors. Recent advances in
electronics and miniaturization contribute to the increased availability of these systems and the popularization
of their use [1]. It is worth mentioning that the commercial popularization of drones for seemingly unrelated
purposes (defense, videography, traffic control, construction planning, mining, etc.) aids research by
development of new technologies, sensors, control elements and air frames that can be adapted for mapping,
environmental monitoring and modeling. We can expect that further investments in aforementioned fields will
contribute to further development of novel applications of UAS in wetland mapping and hydrological modeling.

The following conclusions can be drawn from this review:

• The key advantage of the UAS is the ability to capture spatial data with high spatial and temporal
resolution coupled with time and cost efficiency. Filling the void between time-consuming terrain
measurements and expensive and sophisticated satellite and airborne data collection benefits a vast
array of research, including environmental monitoring and modeling at unprecedented resolution
and ease (see Sections 2 and 4.3)

• The use of UAS-derived data bolstered by environmental sensor networks, satellite-based remote
sensing, and high-performance numerical modeling [104] brings new opportunities in hydrology and
related fields: modeling, predictions and overall understanding of hydrological processes enters into
new era thanks to availability and affordability of reliable high resolution terrain data (see Section 5).

• The most common type of UAS used for wetland mapping and hydrological modeling is the rotary
wing and the prevailing sensor used for this purpose is an RGB camera (see Section 5). It is caused by
affordability and ease of use of both technologies. There is room for development and advancement
of other sensors in addition to taking advantage of fixed wing UAS capabilities (see Section 3.1).

• Ample choice of processing software and analytics algorithms gives opportunity to investigate
various hydrological phenomena, but the shortcoming of the Structure from Motion algorithms in
reconstructing homogeneous and moving scene elements makes it challenging to capture water (it is
either still and homogeneous or moving) and snow (homogeneous) surfaces, crucial for analyzing
some aspects of hydrological studies.

• Another shortcoming of using optical sensor for hydrological research lies in the inability to penetrate
vegetation. Representing the ground surface is crucial, especially for hydrological modeling and
wetland studies in very densely vegetated wetland areas. This can be addressed by the use of lidar,
but, just like hyperspectral sensors, they face a challenge of maintaining good quality data capture
capabilities while miniaturization progresses. An additional barrier is the relatively high cost of these
sensors (see Section 3.2).

• The issue of scale can also be a disadvantage for the use of UAS. Many wetlands cover significant areas
and capturing the whole basin is also very important in hydrological modeling. While technology
allows for long flights, the legislation prohibits operations beyond the line of sight (without a waiver),
which results in the need of multiple flight missions in commonly hard to reach wetland areas.
With the addition of extended visual line of sight (EVLOS) lies a hope for the future change of law or
easing the waiver obtaining process (see Section 4.4).

• Along with all the advantages of the UAS use also come the safety and privacy concerns. It is crucial
for each UAS user to be informed, follow the state and federal legislature, and ensure the proper
equipment maintenance in order not only to avoid collision but also to maximise the benefits of UAS
use while respecting privacy.

We can expect further advances in technology followed by more common and more novel use of the
UAS for wetland mapping and hydrological modeling in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

AGL Above Ground Level
ASL Above Sea Level
AOI Area of Interest
BVLOS Beyond Visual Line of Sight
CIR Color-Infrared
dGPS differential Global Positioning System
DEM Digital Elevation Model
DoD Department of Defense
DSM Digital Surface Model
DTM Digital Terrain Model
EVLOS Extended Visual Line of Sight
FAA Federal Aviation Administration
GCP Ground Control Point
GCS Ground Control Station
GNSS Global Navigation Satellite System
GPS Global Positioning System
GSD Ground Sampling Distance
IMU Inertial Measurement Unit
INS Inertial Navigation System
lidar light detection and ranging
MVS Multiple View Stereo
NDVI Normalized Difference Vegetation Index
NIR Near-infrared
OBIA Object-based Image Analysis
PPK Post Processed Kinematics
RGB Red Green Blue
RTK Real Time Kinematics
SAR Synthetic Aperture Radar
SfM Structure from Motion
STOL Short Take-Off and Landing
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle
VLOS Visual Line of Sight
VTOL Vertical Take-Off and Landing
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48. Miziński, B.; Niedzielski, T. Fully-automated estimation of snow depth in near real time with the use of

unmanned aerial vehicles without utilizing ground control points. Cold Reg. Sci. Technol. 2017, 138, 63–72.
[CrossRef]

49. Sanz-Ablanedo, E.; Chandler, J.; Rodríguez-Pérez, J.; Ordóñez, C. Accuracy of unmanned aerial vehicle (UAV)
and SfM photogrammetry survey as a function of the number and location of ground control points used.
Remote Sens. 2018, 10, 1606. [CrossRef]

50. Hugenholtz, C.; Brown, O.; Walker, J.; Barchyn, T.; Nesbit, P.; Kucharczyk, M.; Myshak, S. Spatial accuracy
of UAV-derived orthoimagery and topography: Comparing photogrammetric models processed with direct
geo-referencing and ground control points. GEOMATICA 2016, 70, 21–30. [CrossRef]

51. Lane, S.N.; Richards, K.S.; Chandler, J.H. Developments in monitoring and modelling small-scale river bed
topography. Earth Surf. Process. Landf. 1994, 19, 349–368. [CrossRef]

52. Chandler, J. Effective application of automated digital photogrammetry for geomorphological research.
Earth Surf. Process. Landf. 1999, 24, 51–63. [CrossRef]

53. Westaway, R.M.; Lane, S.N.; Hicks, D.M. The development of an automated correction procedure for digital
photogrammetry for the study of wide, shallow, gravel-bed rivers. Earth Surf. Process. Landf. 2000, 25, 209–226.
[CrossRef]

54. Bennett, G.; Molnar, P.; Eisenbeiss, H.; McArdell, B. Erosional power in the Swiss Alps: Characterization of slope
failure in the Illgraben. Earth Surf. Process. Landf. 2012, 37, 1627–1640. [CrossRef]

55. Brasington, J.; Rumsby, B.T.; McVey, R.A. Monitoring and modelling morphological change in a braided
gravel-bed river using high resolution GPS-based survey. Earth Surf. Process. Landf. 2000, 25, 973–990. [CrossRef]

56. Micheletti, N.; Chandler, J.H.; Lane, S.N. Structure from Motion (SfM) Photogrammetry. In Geomorphological
Techniques; Cook, S.J., Clarke, L.E., Nield, J.M., Eds.; British Society for Geomorphology: London, UK, 2015.

57. Ullman, S.; Brenner, S. The interpretation of structure from motion. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1979,
203, 405–426. [CrossRef]

58. Seitz, S.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A comparison and evaluation of multi-view stereo
reconstruction algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition—Volume 1 (CVPR’06), New York, NY, USA, 17–22 June 2006; IEEE: Piscataway,
NJ, USA, 2006. [CrossRef]

59. Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: a
new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [CrossRef]

60. Gomez, C.; Hayakawa, Y.; Obanawa, H. A study of Japanese landscapes using structure from motion derived
DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and
diachronic geomorphology. Geomorphology 2015, 242, 11–20. [CrossRef]

61. Carrivick, J.; Smith, M.; Quincey, D. Structure from Motion in the Geosciences; John Wiley & Sons, Ltd.: Hoboken,
NJ, USA, 2016.

62. Smith, M.; Carrivick, J.; Quincey, D. Structure from motion photogrammetry in physical geography. Prog. Phys.
Geogr. Earth Environ. 2015, 40, 247–275. [CrossRef]

63. James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy
and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117, 1–17. [CrossRef]

64. Verhoeven, G.; Doneus, M.; Briese, C.; Vermeulen, F. Mapping by matching: A computer vision-based approach
to fast and accurate georeferencing of archaeological aerial photographs. J. Archaeol. Sci. 2012, 39, 2060–2070.
[CrossRef]

65. Westoby, M.; Brasington, J.; Glasser, N.F.; Hambrey, M.; Reynolds, J. ‘Structure-from-Motion’ photogrammetry: A
low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [CrossRef]



Remote Sens. 2019, 11, 1997 37 of 39

66. Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the world from internet photo collections. Int. J. Comput. Vis. 2007,
80, 189–210. [CrossRef]

67. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

68. Tareen, S.A.K.; Saleem, Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. In Proceedings
of the 2018 IEEE International Conference on Computing, Mathematics and Engineering Technologies (iCoMET),
Sukkur, Pakistan, 3–4 March 2018; IEEE: Piscataway, NJ, USA, 2018. [CrossRef]

69. Wu, M. Research on optimization of image fast feature point matching algorithm. EURASIP J. Image Video
Process. 2018, 2018. [CrossRef]
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