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Module contents

1. Introduction to Unmanned Aerial Systems

2. UAVs payload: sensors for environmental
monitoring

3. UAVs operation

4. Examples of application of UAVs for
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Figure 1 Diagram showing a typical airborne lidar. Typically, each pulse is reflected from a number of objects
on the earth’s surface, generating multiple returns that are captured digitally as discrete pulses by the data
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logging system. The amplitude of each return is logged as the intensity value.

Challis, K., A. Howard, Derek Moscrop, B. Gearey, David Smith, C. Carey
and A. Thompson. “Using airborne LIDAR intensity to predict the
organic preservation of waterlogged deposits.” (2018).
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Points from waveforms

Fig. 6. Extracted points on different tree species from full-waveform data post-processing. (a) Deciduous (leaf-on). (b) Deciduous (leaf-off). (c) Coniferous. Red, green and
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U“!j___SSQS Visual-band cameras

Table 3. Main parameters of some commonly used UAS mounted Visual-Band cameras.

Manufacturer Resolution Weight Speed
and Model [px] lg] |/s]
DJI Zenmuse X7 24 MP (multiple photo sizes) 449 up to 6000
MAPIR Survey3 4000 x 3000 50 * up to 200
PhaseOne iXU-RS 1000 11,608 x 8708 930 up to 2500
Sony ILCE-QX1 5456 x 3632 158*  up to 4000
senseFly 5.0.D.A. 5472 x 3648 111 up to 2000

* Without lens.

Figure 7. Lefi: High-resolution mosaic, constructed from aerial ima-
ges acquired by a quadcopter over the Campsite of Coja, overlaying
Google Earth. Right: Zoom of the area indicated in red in the image

M. Almeida et al., Analysis of fire hazard in campsite areas, Fire Technology, 53(2):553-575, 2017,
doi: 10.1007/s10694-016-0591-5

Figure 5. Some commonly used UAS Visual-Band cameras, listed in Table 3: (A) DJI Zenmuse X7;

(B) MAPIR Survey3 (also avaliable in multispectral option); (C) PhaseOne iXU-RS 1000; (D) Sony ILCE-QX1; Justyna Jeziorska, UAS for Wetland Mapping and Hydrological Modeling, Remote Sensing, 11, 2019,
(E) senseFly S.O.D.A. doi:10.3390/rs11171997
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CS Visual-band cameras

Figure 7. Processed RGB imagery using Structure from Motion (5fM) techniques. Visible lack of data below the

canopy on dense point cloud (A) and resulting misrepresentation of the canopy structure on a 3D model (B) and
textured 3D model (C).

Justyna Jeziorska, UAS for Wetland Mapping and Hydrological Modeling, Remote Sensing, 11, 2019,
doi:10.3390/rs11171997
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Figure 9. Currently available thermal cameras, listed in Table 6: (A) FLIR T450sc; (B) FLIR Thermovision
A40M; (C) ICI 7640 P-Series; (D) Optris PI400; (E) Pearleye LWIR; (F) Thermoteknix MIRICLE 370 K;
(G) Xenix Gobi-384 (Scientific).

Table 6. Some of the currently available thermal cameras, after Khanal et al. [29], modified. 0 40 N '80 .120m

Manufacturer and Model Resolution Weight Spectral Band

[px] [g] [um]
FLIR T450sc 320 x 240 880 * 7.5-13.0
FLIR Tau 6-;0 640 x 512 110 75.13.5 Figure 2. A thermal survey over an Aglianico vineyard in the Basilicata region (southern Italy)
FLIR Thermovision A40M 320 x 240 1400 7.5-13.5 overlaying an RGB orthophoto obtained by a multicopter mounted with both optical and FLIR Tau
ICT 320x . 320 x 240 150 * 7.0-14.0 2 cameras. Insets (A) and (B) provide magnified portions of the thermal map, where it is possible to
:;C\:flr:(;:? :;:g;::k M4 (I,:((: : ‘]"2‘8 ;Zi’ :3:1:3 distinguish vineyard .rows (B? and surface temperature distribution on bare soil with a spot of colder
Optris P1400 382 x 288 320 * 75-13.0 temperature due to higher soil water content (B).
Pearleye LWIR 640 x 480 790 * 8.0-14.0
Photon 320 324 x 256 97 7.5-13.5
Tamarisk 640 640 x 480 121 8.0-14.0 . . . _ .
Thermoteknix MIRICLE 370 K~ 640 x 480 166 8.0-12.0 Justyna Jeziorska, UAS for Wetland Mapping and Hydrological Modeling, Remote Sensing, 11, 2019,
Xenix Gobi-384 (Scientific) 384 x 288 500 * 8.0-14.0 doi:10.3390/rs11171997

“With howsing and lens Salvatore Manfreda et al., On the use of unmanned aerial systems for environmental monitoring, Remote

UNte! s momon U LISBOA | Lwvessions

Sensing, 2018, 10, 641, doi:10.3390/rs10040641
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Figure 10. Some commonly used lidar sensors for UAS, listed in Table 7: (A) Riegl VUX-1UAYV; (B) Riegl E .
multiple photographs

VUX-240; (C) Routescene UAV LidarPod; (D) Velodyne HDL-32E; (E) Velodyne PUC VLP-16; (F) YellowScan
Mapper II; (G) YellowScan Surveyor.

Table 7. Main parameters of some lidar sensors designed for UAS.

Manufacturer Range Weight Field of Laser Accuracy
and Model [m] [g] View ["] Class [mm] . .
_ B. Terrestrial lidar
Riegl VUX-TUAV 3350 3500 330 1 10
Riegl VUX-240 2—14N) 3600 +37.5 Ik 20)
Routescene UAV LidarPod  0-100 1300 (H)41, (V)360 1 (XY)15* (Z) 8+ & lines show track of scan across ground
Velodyne HDL-32E 80100 1300 (H)360), ] 20) circles show actual ground return footprints
(V)+10 to —30
Velodyne PUC VLP-16 (100 830 (H)360, (V)£15 1 3
YellowScan Mapper Il 1075 2100 100 1 (XY) 150 (£) 50
YellowScan Surveyor 10-60 1600 36() 1 50

(H) Horizontal, (V) Vertical, * with RTK. Figure 14. A schematic illustration of three methods of producing high-resolution digital topography:

A. Airborne lidar (light detection and ranging), B. Terrestrial lidar, C. UAS-based structure from Motion

Justyna Jeziorska, UAS for Wetland Mapping and Hydrological Modeling, Remote Sensing, 11, 2019, (GPS—global positioning system; IMU—inertial measurement unit), modified from Johnson et al. [72].

doi:10.3390/rs11171997
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Video “Gooqgle Earth’s incredible 3D imagery, explained”
Credits to Nat and Friends YouTube channel
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