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A B S T R A C T

A global beach litter assessment is challenged by use of low-efficiency methodologies and incomparable pro-
tocols that impede data integration and acquisition at a national scale. The implementation of an objective,
reproducible and efficient approach is therefore required. Here we show the application of a remote sensing
based methodology using a test beach located on the Saudi Arabian Red Sea coastline. Litter was recorded via
image acquisition from an Unmanned Aerial Vehicle, while an automatic processing of the high volume of
imagery was developed through machine learning, employed for debris detection and classification in three
categories. Application of the method resulted in an almost 40 times faster beach coverage when compared to a
standard visual-census approach. While the machine learning tool faced some challenges in correctly detecting
objects of interest, first classification results are promising and motivate efforts to further develop the technique
and implement it at much larger scales.

1. Introduction

Marine litter is defined as any persistent, manufactured or processed
solid material discarded, disposed of, abandoned or lost in the marine
and coastal environment (UNEP, 2005). Estimates report that 60–80%
of macro-marine litter and up to 100% of all buoyant debris are derived
from plastic (Derraik, 2002; Galgani et al., 2015), although these re-
present only 16% of the worldwide municipal waste (Muenmee et al.,
2015). The reason for its prevalence is its light weight, buoyancy and
durability, which make it easily transported by winds and currents and
persistent in the ocean.

Recent evidence that marine plastic pollution is a ubiquitous and
everlasting threat impacting on marine life (Wang et al., 2016;
Galloway et al., 2017) has raised public awareness mainly in the last
decade. Consequently, research efforts have been catalyzed to quantify
loads of plastic in the marine environment and help inform on possible
mitigating measures (Cressey, 2016; Xanthos and Walker, 2017). The
importance of resolving the mass balance and fate of marine plastic has
also been highlighted by the finding that the global stocks of floating
plastic represent only a minor proportion of all plastic ever discarded
(Cozar et al., 2014; Eriksen et al., 2014; Jambeck et al., 2015; Van
Sebille et al., 2015). The burning question is where the larger stock of
plastic entering the ocean is to be found. Four major sinks of plastic

debris have been identified worldwide: fragmentation (Cozar et al.,
2014; Andrady et al., 2005; Andrady, 2011; Webb et al., 2013), in-
gestion by marine life (Ryan, 2016), sedimentation (Van Cauwenberghe
et al., 2015) and shore deposition (Galgani et al., 2015; Wang et al.,
2016; Barnes et al., 2009; Browne et al., 2011). Potentially, any coast or
beach in the world could be reached by a floating item (Ebbesmeyer
et al., 2007). Therefore, marine debris (mainly plastic (Thiel et al.,
2013)), is found on shores regardless of their remoteness and proximity
to human settlements (Derraik, 2002; UNEP, 2009; Haynes, 1997;
Convey et al., 2002; Lavers and Bond, 2017). Moreover, beach litter is
of particular concern because of the risk it represents for the environ-
ment, health, society and the economy (NOAA and UNEP, 2011).

Beach litter may represent a terminal phase of oceanic transport or
may represent a transient storage, with some deposits washed again to
sea following severe storms (Browne et al., 2011; Ramachandran et al.,
2005; Shimizu et al., 2008). In any case, beach cast litter constitutes an
important stock, which needs to be accounted for when attempting
mass balances of plastic entering the marine environment. Whereas
progress has been made in estimating both global input rates (Jambeck
et al., 2015) and global stocks and distribution of floating plastic (Cozar
et al., 2014; Eriksen et al., 2014; Van Sebille et al., 2015), estimates of
the abundance and distribution of beach litter stocks, although nu-
merous, are typically pursued on local or regional scales only (e.g.
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(Lavers and Bond, 2017; Moore et al., 2001; Claereboudt, 2004;
Martinez-ribes et al., 2007; Bravo et al., 2009; Lee et al., 2013;
Andrades et al., 2016; Hengstmann et al., 2017; Watts et al., 2017;
Laglbauer et al., 2014) see also Table 2.1 in (Galgani et al., 2015)) and
are therefore insufficient to attempt a global inventory. In addition,
despite the availability of guidelines to monitor beach litter (e.g. AMDS,
NMDMP, NOWPAP and OSPAR guidelines; (OSPAR, 2010; Cheshire
et al., 2009; Ryan et al., 2009; Schulz et al., 2017)), protocols differ,
making comparison and integration of data challenging (Galgani et al.,
2015). Most importantly, assessment of beach litter is time consuming
(Nelms et al., 2017). Traditional beach monitoring relies on visual
census methods, where plastic items are recorded along transects. Ac-
cording to OSPAR, 2010 recommendations, plastic should be counted
between the end of the beach and the water's edge along 100m
transects (1000m for items larger than 50 cm). Litter items larger than
2.5 cm are collected, separated in classes and quantitatively measured.
The whole process generally requires 2–5 trained persons and ideally
should take< 3 h per assessment (Laglbauer et al., 2014; OSPAR,
2010). Detection ability varies depending on the observer's skills,
adding discrepancies to surveys carried out by different people (Lavers
et al., 2016). Hence, visual censuses are subjective, time and labor

consuming, and the area covered is in most cases only a sub-sample of
the targeted beach. The median area surveyed across a number of
studies (Lavers and Bond, 2017; Martinez-ribes et al., 2007; Bravo et al.,
2009; Hengstmann et al., 2017; Watts et al., 2017; Nelms et al., 2017;
Abdo et al., 2011; Abu-hilal, 2004) was 1.162 ha, ranging from 0.131 to
15.915 ha. Therefore, efficient acquisition of estimates of beach litter
remains a major bottle neck to produce the data necessary to assess
global distribution patterns, stocks, and contribution to regional and
global marine litter mass balances.

Here we develop a more efficient method to assess marine beach
litter loads involving the use of an Unmanned Aerial Vehicle (UAV) to
record marine litter through image acquisition. We also provide evi-
dence that processing of the higher throughput of images delivered by
the UAV's, which might also represent a bottle neck in terms of observer
time, can be greatly reduced by developing machine learning tools
aimed at quantifying and categorizing beach litter. Most importantly,
this approach requires only one trained person and allows a total cov-
erage of the beach in a few minutes.

UAVs, because of their high-resolution and their relatively low cost,
are becoming useful and widespread tools supporting environmental
and wildlife surveys (Bhardwaj et al., 2016; Cunliffe et al., 2016; Jones

Fig. 1. Study site. Geographic location of the test beach (black cross on the world map) and area surveyed with the UAV, represented in this figure by the orthomosaic
obtained merging 243 aerial pictures. The orthomosaic close-up shows (with white marks) the distribution of 16 aerial pictures, like the one framed in white. A .kmz
file of the orthomosaic is also provided.

C. Martin et al. Marine Pollution Bulletin 131 (2018) 662–673

663



et al., 2006; Hodgson et al., 2013; L.J.P. and P.M.B et al., 2015;
Hodgson et al., 2016; McCabe et al., 2017), including monitoring
coastal ecosystems to assess beach erosion, post-storm effects and an-
thropological impacts (Papakonstantinou et al., 2016; Casella et al.,
2016; Turner et al., 2016), among many other variables. The UAV
market offers models below $1000 which are suitable for a range of
applications, rendering them as a cost-effective technique. Likewise,
machine learning, through increasingly powerful techniques, are being
used to solve recognition and classification problems across a range of
environmental and ecological research, from modeling species dis-
tribution, diversity and community composition to predicting forests
fires and tsunamis (Brosse et al., 2001; Rollins et al., 2004; Olden et al.,
2006; Iverson and Prasad, 2007; Li et al., 2017). While it is not our aim
here to develop an efficient machine learning tool for this application,
we do explore the viability of this approach and present some en-
couraging initial results, providing evidence that this is a feasible goal
that should be developed further.

2. Materials & methods

We develop and demonstrate a method for the assessment of beach
litter using a quadcopter. UAV images were processed automatically,
applying a beta version of the machine learning tool as a demonstration
of the feasibility of the method. Comparisons with a standard visual
census approach and manual processing of aerial pictures were con-
ducted to assess the efficiency and accuracy of the proposed metho-
dology. Here we report results from one test beach, supporting parti-
cularly high loads of beach litter over an extended area. The case study
is located on the northern Red Sea (26.9109° N 36.0077° E) and is
described by an approximately 350m long beach on a sandy shore, with
small sparse bushes as vegetation and a NW exposure (Fig. 1). The
closest human settlement is 4 km to the south, consisting of a dozen
buildings and a small harbor.

2.1. Remote survey

The remote beach survey was performed using a DJI Phantom 3
Advanced (Adv) quadcopter (http://www.dji.com/phantom-3-adv)
paired with a gimbal mounted 12 Mega Pixel camera. Weighing just
under 1300 g and with a flight time of> 20min, the UAV is a relatively
lightweight remotely controlled system that has a range of up to 5 km.

The GPS/GLONASS positioning system allows a hover accuracy in the
range of 0.5 m vertically and 1.5 m horizontally. Integrated safety and
automated features such as beginner mode, auto-return home and vi-
sual and ultrasonic sensors allow a safe flight and recovery in case of
mission failure. Battery, status and remaining power can be monitored
in real time. Before flying the drone, meteorological conditions (i.e.
rain, poor visibility, high wind speeds) and local regulations should be
checked carefully to avoid flights in adverse conditions or in No Fly
Zones specified by local laws (e.g. airports, borders, densely populated
areas). The lack of a common regulatory framework implies that each
country is applying its own rules on the operation of drones (de Miguel
Molina, 2018). Flying height restrictions, privacy implications and
operator certification requirements may all affect the utility of a drone
based approach to data collection. However, regulations are changing
rapidly, from initial outright bans to a more reasonable application of
the technology for commercial, civilian and recreational purposes
(Allen and Berg, 2018; Jones, 2017) and the expectation is that the
legal framework will catch up to the technological capacity of these
unique observation platforms.

A preliminary test was conducted beforehand on a cleaned beach
near the university facilities to select the best gimbal angle and altitude
to perform beach surveys. Plastic items of different shape (bottles, bags,
cups, bottle caps and food containers), color (transparent to brighter
colors) and size (from 2 cm to 60 cm) were arranged on the beach, both
on a sandy and light background and on an organic matter and dark
background. The system was flown at 5, 10 and 20m altitudes above
ground level (AGL), with the camera gimbal angled 45° and 90°, with
both video and still imagery collected. Camera settings were left in
automatic mode. After analysis, the best approach that satisfied flight
time, coverage, resolution and image quality resulted in a 10-m altitude
flight and 90° gimbal angle. The relationship between flight altitude,
image footprint and ground resolution for the Phantom 3 Adv camera is
shown in Fig. 2, where the ground resolution is based upon on a nadir
pointing camera angle (i.e. 90° to the ground). The chosen altitude is a
good compromise between ground resolution, from 0.5 to 0.7 cm across
and along track respectively, and footprint, 19.5m across track, and it
is preferred to the lower altitude for safety reasons (i.e. to avoid pos-
sible obstacles easily encountered in a 5-m flight). The 90° gimbal angle
allows a better recognition of item shapes, and stills are preferred to
videos due to the lower data storage size and easier subsequent appli-
cation of the automated machine learning based detection approaches.

Open UgCS v.2.10 was used to operate fully automated flight and
navigation of the vehicle. Ground station software allow one to trace a
flight route in transects upon placement of GPS waypoints on the tar-
geted area map, allowing a total coverage of the beach. We used the
Area Scan tool of Open UgCS v.2.10 for this purpose. Considering the
remoteness of the test beach, we planned the mission on an offline map
previously downloaded to overcome the need for internet connectivity
at the sampled area. Automated flight with UgCS v.2.10 can be oper-
ated at a maximum distance of 500m. The UAV flight was planned to
cover almost the entire length of the beach (325m over 350m of beach
length) and a corridor 12 to 35m wide from the water's edge. The UAV
was flown at 2m/s at an altitude of 10m AGL and stills were acquired
automatically every 2 s, allowing for a side overlap of approximately
10m, which assists in the post-processing alignment of imagery. A
suggested protocol representing a convenient approach for beach litter
monitoring using drones is provided in Table 1. The 243 acquired
images (each 4000*3000 pixels in size; i.e. 12MP) were processed using
Agisoft PhotoScan Professional v.1.3.0, resulting in an orthomosaic of
the area (Fig. 1). We used the same software to calculate area covered.
The orthomosaic of the beach, was visually screened to count and
classify anthropogenic debris in 10 categories, chosen based on the
most common debris found during fieldwork and on their origin (i.e.
sea-based and land-based activities), destination (e.g. food and drinks
consumption, fishing, personal or household hygiene) and impact (e.g.
presence of associated pollutants; Table 2, Fig. 3).

Fig. 2. Footprint and ground resolution across and along track related to flight
altitude for a 12 MP camera. Ground resolution is calculated on a camera angle
of 90° to the floor.
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2.2. Ground assessment

A visual census composed of few short transects in the same areas
surveyed with the UAV provides a necessary ground validation of the
remote survey performance. To this end, we conducted a short transect
(14× 4m), where we manually counted and classified items in the
same 10 categories identified above. We then compared visual census
results with those obtained from visual screening through the aerial
image of the same area (Fig. 4) to show how a field assessment can be
used to correct the debris density estimation resulting from the pro-
posed methodology.

2.3. Feasibility of developing a machine learning tool

For any future large-scale implantation of the approach, the high
load of imagery obtained from the UAV demands a more automated
analysis. Hence, we explored the feasibility of using machine learning
to automatically detect and classify debris within the collected aerial
images. Machine learning tools are able to identify and categorize ob-
jects once previously trained on selected imagery. To this end, we used
images of known debris as training data, calculating their feature de-
scriptors and then using them to train a classifier, thereby enabling the
detection of targeted objects in previously “unseen” images.

Feature descriptors are used to describe image characteristics in
vectors and thus allow their comparison, detection and classification.
To depict the features of images used as training data, we employed a
Histogram of oriented gradients (HoG) descriptor. The HoG is a clas-
sical and widely used feature representation method in the computer
vision field, particularly successful in human face detection and pe-
destrian detection (Dalal and Triggs, 2005). Generally, HoG scans the
image by blocks, where each block consists of four adjacent cells.
Gradients of pixels in the cell collaborate to construct a histogram of

gradients, where gradients fall in several bins according to the direction
range. Afterwards, to be locally normalized, histogram vectors of cells
concatenate to form a longer vector for the block via normalization
methods. The training image will be scanned by blocks with a certain
step stride horizontally and vertically, which is usually the same as cell
size, in order to make cells shared by more than one block. Usually, the
descriptors are used to train a Support Vector Machine (SVM) classifier,
which is popularly used for binary classification (Cortes and Vapnik,
1995). However, we used a random forest classifier due to its better
performance on classification accuracy. The random forest algorithm is
one of the more popular ensemble learning methods (Zhang et al.,
2017), which builds a number of decision trees as a forest from the
training samples and uses the aggregated results from the set of decision
trees to make predictions on testing samples. As one kind of ensemble
classifier, random forest has the advantages of ensemble learning, high
robustness and low generalization error. Randomness is introduced
with the training subset selected randomly for each tree and feature
subspace is provided randomly in the process of generating a tree. After
the construction of the forest, the prediction can be made based on
independent voting by each tree. The majority label of the voting is
taken as the final prediction result. Therefore, interference between
trees is reduced, effectively overcoming the overfitting problem of de-
cision tree classifiers, and thus helping promoting the accuracy of
classification, and also reducing the computational cost. Moreover,
compared to SVM, random forest has good performance in high-di-
mensional data and multi-class classification (Zhang et al., 2017),
which is precisely what the proposed methodology is aiming at.

We developed a beta system based on the described machine
learning approach and tested it on a subset of aerial pictures belonging
to the case study beach. The beach was selected considering, among
above cited features, the type of background, which should be relatively
uniform to ease the classifier development (e.g. we excluded rocky
sites, where rocks are easily wrongly detected by the random forest).
Training samples for the classifier are obtained by clipping small fixed-
size areas of 64 ∗ 64 pixels from the orthomosaic of the beach. This
sample size showed a better performance than the alternatively tested
48 ∗ 48 pixels size given the characteristics of the objects of interest.
Given the chosen size, the computed HoG descriptor is a vector of 1764
dimension. For better detection performances, we constructed three
successive random forest classifiers with different training sets. The first
two random forests are aimed at providing a binary classification of the
image areas, with progressive filtering effect, into positive objects (i.e.
litter) and negative objects (e.g., water, sand, bushes, wooden sticks,
rocks), while the third classifier is designed to distinguish multi-class
objects (i.e., drink containers, bottle caps, plastic bags). The training set
is composed of positive and negative samples for the first two classi-
fiers, where the positive were manually picked from the orthomosaic
during visual screening as well as randomly generated, while negative
samples were automatically cut from negative areas of the aerial pic-
tures. In particular, we used 1125 and 1224 positive samples and

Table 1
Suggested protocol for beach litter monitoring using UAVs.

Flight attributes Guidelines

Type of UAV A commercial drone for a cost-effective technique; a
quadcopter is preferred to sustain high wind speed.
Suggested DJI Phantom series.

Time of the day Preferred around midday to limit object shadows and
favor a better automatic processing of images

Camera resolution >12MP
Camera Filters Optical for a recognition of all debris types
Camera inclination Nadir (i.e. 90° to the ground)
Flight altitude <10m AGL
Speed 2m/s
Pictures side overlap >60%
Pictures front

overlap
>75%

Target area Intertidal zone, beach and possibly back of the beach

Table 2
Main anthropogenic debris categories observed during fieldwork and used to classify debris found during visual census and manual processing of UAV images. For
each category, a description and examples are provided.

Debris categories Description

Drink bottles Plastic and glass bottles for beverages (e.g. water bottles, soft drinks bottles, juices bottles, etc.) up to 3 L volume.
Drink drums Plastic dispensers, drums and bottles for water from 3 L volume.
Bottle caps Plastic caps for bottles and dispensers. Caps diameters are generally comprised between 2.5 and 6 cm.
Plastic bags Plastic bags for shopping, garbage and freezer.
Oil containers Plastic bottles, containers and drums for petrol and engine oil from 0.5 L volume.
Detergent and other liquids containers Plastic bottles, containers and drums for cleaners, detergents, cosmetics (e.g. bleach, soap, shampoo, etc.).
Ropes Fishing ropes of> 0.2 cm diameter.
Footwear Any footwear (e.g. shoes, sandals, flip flops, boots, etc.)
Boxes-crates-baskets Plastic containers (e.g. boxes, crates, baskets, buckets, polystyrene boxes, etc.).
Others Any other less represented debris of any material (i.e. plastic, glass, aluminum and tetrapak). It includes plastic fragments, cans, food

containers and wraps, cups, bulbs, nets, buoys, fishing lines, clothes, unidentified items, etc.
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Fig. 3. Example pictures of the main anthropogenic debris categories observed during fieldwork. Each frame represents one category: pictures on the left are taken
from land, on the right through UAV flown at 10-m altitude. A) Debris categories recognized by multi-class random forest: “drink bottles” (1) and “drink drums” (2)
merged in the category “drink containers”; “bottle caps” (3) and “plastic bags” (4). B) Additional categories used for classification during visual census and manual
processing of UAV images: “oil containers” (5); “detergent and other liquids containers” (6); “boxes-crates-baskets” (7); “ropes” (8); “footwear” (9) and “others”. The
latter includes items rarely encountered (e.g. lamps, bricks in Tetra Pak) and fragments or, when monitored through remote survey, without a recognizable and
unique shape but with features such regular borders and bright colors that define their anthropological origin (e.g. half buried items or unidentified items).

N

1 m

Fig. 4. Beach area, 14-m long and 4-m wide, used for ground assessment viewed from a 10-m altitude.
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11,509 and 4238 negative samples to train the first and the second
classifiers respectively. The third classifier is trained on multi-class
samples, with the goal of assigning objects to 3 categories: “drink
containers” (including “drink bottles” and “drink drums”), “bottle caps”
and “plastic bags” (Fig. 3a). Categories are selected a priori considering
the most observed items during fieldwork and the more defined in
terms of shape features, thus with potential to be rightly classified via
machine learning. Multi-class training samples were obtained from the
second random forest training set, including 1014 “drink containers”,
88 “bottle caps” and 122 “plastic bags”. To make classes of training data
balanced, we randomly sampled 30% of the “drink containers” images
(n=302) and generated triple times additive samples for “bottle caps”
and “plastic bags” categories (n=352 and 488, respectively) by small
random floating in HoG descriptor. Negative samples were also in-
cluded (n=419) to reflect information of the background. The class
weight is defined by a ratio of 1:1:1:1 after experiments. Other com-
binations of the number of samples and weights did not show obvious
improvement or retrogress.

Testing aerial pictures are screened by the sliding window method,
where HoG descriptor of the image area under the window is computed
and decided by the random forests. Testing pictures are a subsample of
the whole beach pictures (n=13), chosen under the principle of more
suspicious object and less influential background to demonstrate the
applicability of the automated processing. For example, pictures with
few objects in a complicated background are not picked, while those
with many objects in a complicated background are still picked.
Considering that adjacent aerial pictures have considerable within-
image overlap, and that some of the pictures used for testing under the
above principle may be adjacent, some objects may appear twice. Also,
since chosen pictures are those with more objects, the results of the
machine learning reported are to be used only as a comparison among
methodologies and not as an estimate of litter density in the test beach.
This issue will be overcome if the machine learning is applied on the
orthomosaic of the area, which will require modification of the machine
learning tool to deal with much larger images than those used here.
However, the results help in assessing the feasibility of developing ef-
ficient machine learning tools supporting the large-scale implementa-
tion of the drone-based assessments developed here, while providing
clues to aspects of this methodology that are critical for successful
machine learning applications.

2.4. Visual census

In parallel to the remote sensing based procedure and as a com-
parison with its time-efficiency, we conducted a standard visual census
on 9 additional sites along the Red Sea coastline (Fig. 5), for a total of
93 transects (from 6 to 18 per beach). Sites were sandy beaches not
influenced by human impact, and chosen depending on accessibility.
Transects were randomly placed parallel to the coastline, just above the
upper tidal limit. Their length varied from 5 to 50m and was chosen
dependently from items density: shorter lengths for highly dense spots
and longer where items were sparsely scattered (Andrades et al., 2016).
Transects width varied from 3 to 10m and was chosen dependently
from the beach width. For each transect we recorded GPS point, di-
rection, time, number and type of objects and we took pictures of all
items unless they were standard and common. Items were assigned to
10 categories (Fig. 3) as during visual screening of the orthomosaic.

3. Results

3.1. Remote survey and manual screening of aerial pictures

At the test beach, a 10-min flight allowed an area of approximately
6400m2 to be covered. The visual screening of the orthomosaic took a
few hours and reported a total of 1756 anthropogenic debris, yielding
an average density of 0.27 items/m2. The distribution of beach litter

ranged from lower densities in the intertidal zone to higher on the
beach and the back beach, with some hotspots of accumulation espe-
cially where vegetation is present (Fig. 6). The most abundant,

30 N

25 N

20 N

15 N

35 E 40 E

N

Fig. 5. Sites map of visual census surveys. Black dots correspond to 9 sites
surveyed through visual census, at each site plastic was counted along 6 to 18
transects 5- to 50-m long.
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Fig. 6. Beach litter density map of the study beach (Fig. 1) reporting litter
objects per m2 in the area surveyed with the UAV.
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excluding the category “others”, were plastic bottles (n=738, 42% of
total debris), followed by bags (n=80) and bottle caps (n=46).
Eighty-five items were directly related to fishing activities (4.8% of
total debris), including oil containers (n=38), ropes (n=24), poly-
styrene boxes and crates (n=20), a buoy and two fishing nets. We also
encountered 24 shoes, which we observed to be surprisingly common
on Saudi beaches. Only 84 items were not plastic debris, and included
glass bottles (n=43), cans (n=31), neon lamps (n=8), a fridge and a
washing machine (Table 3).

3.2. Ground assessment

In the 56m2 transect used as ground assessment, 123 items were
detected through visual census, while manual screening of the UAV
picture of the same area reported 76 items, thereby resulting in a 61.8%
detection probability of litter identification from 10m-altitude pictures
compared to that derived using ground assessment. Item classification
obtained from the two approaches is reported in Table 4. Items be-
longing to categories “oil containers” and “detergents and other liquids
containers” were merged due to a missed distinction during visual
census, while two of the 10 main categories of litter were not present in
this area (“drink drums” and “boxes-crates-baskets”). Smaller items
(< 4 cm in average linear dimension) are those mainly not recorder
through remote survey (e.g. small fragments, bottles caps, plastic rings,
bullets, Table 4). Items with distinct shapes were easily recognizable
(e.g. neon lamps and footwear) and were all detected with manual
screening as well. Items belonging to the categories “drink bottles” and
“oil containers and detergent containers” can easily be inappropriately
classified with low resolution images due to their similar shape, which
explains why items of the latter category detected with the remote
sensing survey exceeded those counted with the visual census (Table 4).
However, it is relevant to discriminate oil and detergent containers
from drink bottles, despite their similar shape, because of their different
pollutant profiles, which pose a major threat to the marine environ-
ment. Once we performed a chi-square test on the relative proportion of
categories from the two approaches and considering visual census re-
sults as expected values, we determined that the distribution of the 7
main categories proportions were significantly different between
methodologies (X2= 17.09, df= 6, p=0.009). However, this may be
due to different abilities of the two procedures in detecting smaller
items. Exclusion of small (< 4 cm) items (i.e. bottle caps, rings, bullets
and the straw) or exclusion of bottle caps only led to no significant
differences in the distribution of other objects among categories
(X2= 10.06, df= 5, p=0.0737 and X2= 8.49, df= 5, p=0.1312,
respectively).

3.3. Machine learning

Random forests applied on 13 testing aerial pictures reported a total
of 2103 items (mean ± SE 161.77 ± 23.94 per picture) divided into
1912 “drink containers”, 120 “bottle caps” and 71 “plastic bags”. The
manual screening of the same 13 pictures instead outlined 413 items
(31.77 ± 5.69 per picture) belonging to the same categories: 367
“drink containers”, 20 “bottle caps” and 26 “plastic bags”. Accuracy is
therefore 39.5%. Particularly, the random forest classifier showed a
better performance with the category “drinks containers” (44%,
Table 6). The 5-times larger number of objects identified automatically
through machine learning is due to a tendency of false positives (i.e.
natural items recognized as litter, Table 6). Missed detections are also
present (Fig. 7). However, there was a significant positive correlation
between items abundance found with the two methodologies in each
picture (Spearman correlation, r=0.61, p=0.026, n=13), showing
that images with higher density of plastic items lead to higher detec-
tions by the random forest algorithm. Moreover, the median relative
proportion of the three categories obtained by the automated approach
was 92%, 3.9% and 3% per picture for “drink containers”, “bottle caps”
and “plastic bags” respectively (mean ± SE=91.4 ± 0.8%, 4.5
± 0.8% and 4.1 ± 0.8%), which is comparable and not significantly
different with medians found through manual screening of the same
pictures: namely 88.1%, 4.9% and 6.8% (mean ± SE=85.3 ± 4%,
4.5 ± 1.1% and 10.2 ± 3.3%, Table 5).

3.4. Visual census

The beach area covered through visual census accounted for 3956m2 in
9 sites, excluding the transect for ground assessment of remote survey. The
actual counting of debris along each transect took an average of 2–3min,

Table 3
Results from manual screening of the test beach orthomosaic: abundance (n of
items), density (items·m−2) and relative proportion (%) of 10 debris categories
as in Fig. 3.

Debris categories Abundance
(n items)

Density
(items·m−2)

Proportion (%)

Drink bottles 738 0.12 42
Drink drums 45 0.007 2.6
Bottle caps 46 0.007 2.6
Plastic bags 80 0.013 4.6
Oil containers 38 0.006 2.2
Detergent and other liquids

containers
36 0.006 2.1

Ropes 24 0.004 1.4
Footwear 24 0.004 1.4
Boxes-crates-baskets 20 0.003 1.1
Others 705 0.11 40

Table 4
Comparison of results obtained from two monitoring methods on an area of
56m2: visual census and remote survey followed by manual screening of aerial
pictures. Each method section reports abundance (n of items) and relative
proportion (%) of the categories detected. Seven main categories were identi-
fied in the area surveyed.

Visual census Remote survey+manual
screening

Debris categories Abundance Proportion Abundance Proportion

Drink bottles 45 36.6% 28 36.8%
Of which glass bottles 4 3.2% 2 2.6%

Bottle caps 14 11.4% 1 1.3%
Plastic bags 8 6.5% 1 1.3%
Oil and detergent

containers
10 8.1% 12 15.8%

Ropes 4 3.2% 2 2.6%
Footwear 2 1.6% 2 2.6%
Others 40 32.5% 30 39.5%
Neon lamps 2 1.6% 2 2.6%
Cans 2 1.6% 1 1.3%
Cups 2 1.6% 1 1.3%
Bullets 2 1.6% 0 0%
Deodorant stick 1 0.8% 1 1.3%
Food wrap 1 0.8% 0 0%
Toothpaste 1 0.8% 0 0%
Toothbrush 1 0.8% 0 0%
Straw 1 0.8% 0 0%
Pipes 6 4.9% 5 6.5%
Plastic rings (from
bottle caps)

3 2.4% 0 0%

Big plastic fragments 1 0.8% 1 1.3%
Small plastic fragments 17 13.8% 0 0%
Unidentified items 0 0% 19 25%
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resulting in a time-efficiency of 16.31 ± 1.3m2.min−1 (mean ± SE),
from 1.25m2·min−1 to 30m2·min−1 in the most and least densely littered
transects, respectively. Considering also the relocation between transects,
which should be distant enough to have a good estimate of the entire beach,
it took at least 2 h to conduct a visual survey of 10 short transects (10, 15m
long) with two trained observers. In total, 1747 items were counted in all
the 9 sites, yielding a total density of 0.44 items·m−2 and densities
within transects ranging from 0 to 7 items·m−2 (mean ± SE=0.63
± 0.1 items·m−2) and within sites from 0.26 ± 0.16 to 1.72
± 2.66 items·m−2 (mean ± SE=0.66 ± 0.99 items·m−2). Not surpris-
ingly, the most abundant debris found were bottles (n=723, 41.4% of total
litter; mean within sites 42.5 ± 4.7%), followed by oil containers
(n=162, 9.3%; 8.6 ± 30.2% within sites). Non-plastic items, mainly glass
bottles and jars (n=45), represent 5.72% of all debris (n=100,
8.7 ± 1.3% within sites, Table 7).

4. Discussion

Saudi Arabian beaches are mainly remote and, except few cases,
untouched by tourism or human activities, features that make them a
good case study to determine dispersion of marine debris by natural and
meteorological events. This analysis may require a seasonal monitoring
of the beach, which is a major issue for an already time- and labor-

B

A

Fig. 7. A) Example of random forest classification on one aerial picture.
Quadrats represent object detected by the random forest: “drink containers” in
green; “bottle caps” in blue and “plastic bags” in red. B) Close-up of the aerial
picture corresponding to the white area in A). In this zoom, 4 objects were
detected as “drink containers”: 3 are correctly classified (a bottle, a half-buried
bottle and a drum) and 1 is a false positive (a wooden stick). Two bottles were
missed detected (in yellow). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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consuming approach (such as the standard visual census). An efficient,
reliable and accurate remote monitoring technique would make such a
repeat survey far more feasible.

4.1. The potential of UAV approaches for litter detection

The beach survey conducted using a UAV resulted in a 39-time
faster beach coverage than with a standard approach where a beach is
screened by walking. Generally, the issue encountered during visual
census of selecting easily accessible sites can be overcome through re-
mote surveying, where areas can be easily monitored without direct
access. The high footprint of the UAV allows one to cover almost the
entire length of the beach, avoiding the need for random subsampling
and providing a better and more reliable estimate of litter loads. The
UAV survey was not limited to the beach as in standard approaches, but
also included the back of the beach, where litter was also observed
(Fig. 6). Importantly, all of this coverage required the work of only one
person. However, while remote surveys are undoubtedly highly time-
efficient compared to visual approaches, this time-saving method may
lead to loss in achievable accuracy.

Despite the high image resolution of< 1 cm, an underestimation of
beach litter density obtained from aerial pictures compared to direct
observation can be expected. Through manual screening of pictures,
smaller items were often hardly detectable, and shadows, the presence
of vegetation and discontinuous backgrounds (as well as the absence of
a third dimension) sometimes complicated the recognition of larger
items too. Through automatic processing of images, misdetections were
mainly due to plastic items of small sizes (< 4 cm) and the high
variability of objects within the same category. Despite missing objects,
random forest classifier actually overestimated litter abundance given
false positives, mainly caused by a limited number of training samples,
ambiguity of objects derived from limited image resolution and diffuse
edges due to partial burial in sand, and backgrounds with reduced
contrast with the objects. Nevertheless, both weaknesses, namely un-
derestimation due to low resolution of aerial images and machine
learning inaccuracy, can be minimized and addressed with future
methodological implementations as following from the experience
gained in this feasibility study.

4.2. Methodological improvements

The use of ground controls is a valuable approach to correct the
density underestimation. We showed an example of a visual transect in
the beach case study. Although the total abundance of items in the area
differs considerably between visual census and remote survey assess-
ments, the relative proportion of debris categories is generally main-
tained, with the main differences encountered due to small debris.
These results suggest that the remote sensing approach offers a practical
methodology to classify beach litter, and if coupled with visual field
assessments, to estimate its abundance too. For instance, litter density
estimate obtained through remote survey and manual image processing
accounted for 0.27 items·m−2, and detection accuracy compared to
visual census was 61.8%. Assuming this proportion to be re-
presentative, we could correct the underestimated density for a 1.62
factor and obtain a value of 0.44 items·m−2, which corresponds to the
overall density found with visual census surveys. However, this requires
additional field assessments of beaches surveyed using UAVs to obtain a
robust empirical correction factor. Future UAVs flights should, there-
fore, be coupled with short visual transects.

Missing objects and false positives are common challenges when
applying machine learning approaches. The inaccuracy of the auto-
matic processing partly comes from high variability of both anthro-
pogenic debris and background objects, which is not sufficiently re-
presented in our training set due to the limited number of training
samples, particularly for less abundant categories (“bottle caps” and
“plastic bags”). Better performance can be achieved as the number of
training samples derived from additional surveys increases. Also, a
better classification execution can be obtained with higher resolution
images (i.e. the Phantom 4 Pro offers a 20MP camera). Higher image
quality can also be obtained by conducting drone flights at 5m height,
when possible and, most importantly, after a thoroughly safety check
on the irregularity of terrain altitude. Lower surveys imply a lower
footprint, increased flight time and a higher imagery load, undermining
the remote survey time-efficiency. However, efficiency would be
anyway higher than with a visual census, while resolution would
greatly improve, enhancing machine learning performances and
shortening image processing times. The result is that the whole meth-
odology (remote survey followed by automatic image processing)
would maintain if not increase its efficiency. Moreover, the perfor-
mance of machine learning approaches is expected to be enhanced by
combination with deep leaning algorithms (Arel et al., 2010), where the
features of objects are learnt and extracted by deep neuron networks
rather than as pre-defined descriptors. The learned features will be
more comprehensively expressive, and thus result in better detection
and classification results. Meanwhile, the three-category recognition
achieved by this first, exploration version of the machine learning tool
provides a demonstration of the potential of an automatic approach.
With improved performances, the classification could address more
categories (e.g. Table 2) and yield more accurate estimates of litter
density when applied to orthomosaics, devoid of within-image over-
laps.

Although improvements can be accomplished, results obtained from
the exploration beta system developed here clearly show the feasibility
of using machine learning algorithms as an approach to assimilate the
high-throughput of images resulting from the use of UAVs, where

Table 6
Contingency table comparing objects classified by visual screening and random forest in the 13 testing images.

Debris categories Objects visually detected Objects detected by classifier True positives False positives False negatives Detection rate

Drink containers 368 1914 162 1752 206 44%
Bottle caps 20 120 1 119 19 5%
Plastic bags 27 71 1 70 26 3.7%

Table 7
Visual census results on 9 sites: mean density (items·m−2) ± SE and mean
relative proportion (%) ± SE of 10 debris categories as in Fig. 3.

Debris Categories Density
(mean items·m−2 ± SE)

Proportion
(mean % ± SE)

Drink bottles 0.25 ± 0.31 42.5 ± 4.7
Drink drums 0.007 ± 0.02 1.3 ± 0.2
Bottle caps 0.035 ± 0.09 4. 6 ± 1
Plastic bags 0.025 ± 0.03 5.9 ± 4.6
Oil containers 0.057 ± 0.12 8.6 ± 2.1
Detergent and other liquids containers 0.017 ± 0.3 2.4 ± 0.4
Ropes 0.018 ± 0.05 3 ± 0.6
Footwear 0.007 ± 0.03 1 ± 0.4
Boxes-crates-baskets 0.003 ± 0.01 0.5 ± 0.2
Others 0.19 ± 0.06 30.2 ± 3.7
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manual classification will be prohibitive in any regional-scale beach
litter assessment. The relative abundance of objects as derived from the
exploratory machine learning tool is comparable to a manual approach,
while the correlation found between total counts within the two
methods also demonstrates that a correction of the overestimation
given by machine learning, even at this early demonstration stage, is
possible.

4.3. Towards a mass balance approach to litter estimation

One limitation of the proposed methodology is the lack of mass
measurements, which are normally carried out during visual census,
where debris are collected and weighed (OSPAR, 2010). However, an
estimate of the litter mass is still possible combining three approaches.
First, common and standard items (e.g. oil containers, bottle caps and
bottles of known volume) also have standard weights, so the mass es-
timates can easily be obtained by multiplication of their abundance and
the average weight of few samples. Second, some objects have standard
material composition (e.g. plastic bags, glass bottles, ropes, cans), so
that knowing the density of the material, and inferring volume from
object area, mass can be calculated. Object area can be gained auto-
matically through random forest classifiers that can be computed to
obtain area rather than abundance. Third, for any remaining objects
(mainly plastic fragments), an estimation of density can be assumed
considering mean density of floating plastic debris, which are more
likely to reach beaches via water. A problem encountered in our
methodology was related to the detection of smaller objects (i.e. likely
to be missed), which influenced density estimates, albeit with a lower
impact on total mass, as these small items represent a modest con-
tribution. Considering OSPAR guidelines, items smaller than 2.5 cm,
close to the threshold at which significant lack of detection occurs, are
excluded from beach litter estimates through visual census, thus making
our methodology consistent with current standards.

Importantly, visual census surveys described in this paper targeted
different areas than that remotely monitored and were addressed in this
analysis mainly to estimate visual census time-efficiency and make a
comparison with remote surveys. However, the high agreement found
between results from visual census and remote survey followed by
manual screening is further evidence of the feasibility of using UAVs for
beach surveys and allows to postulate specific hypotheses on the ex-
pected relative amount and typology of litter on Saudi Arabian beaches,
where plastic bottles dominate.

4.4. A universal tool for application in international frameworks

Classifying as well as unveiling spatial and temporal patterns of
marine litter in the Red Sea and globally is the key to identify its pos-
sible sources and sinks and help planning focused intervention, both
preventive and restorative. The use of UAVs, coupled with efficient
machine learning algorithms to process the large volumes of generated
imagery, represent a promising approach to allow regional scale as-
sessments of beach macro-litter and their assessment over time. The
method proposed here, once amended with the improvements sug-
gested, will provide a cost-effective approach to assess beach litter at
scale that could be adopted more broadly, as it can be readily applied
worldwide. The final protocol, built on the guidelines provided in
Table 1, is meant to be applied across a wide range of environments,
requiring limited resources and, therefore, being available across the
broad range of actors, from citizen groups, to NGOs, research organi-
zations and government agencies, interested in addressing the problem.
We therefore propose the use of drones for beach litter monitoring,
according to the guidelines provided here, not only as a cost-effective
and universal technique, but also for its accessibility. This approach
does not require particular expertise and can be handled by one person
at a time, making this methodology easy to be applied and thus
allowing coherence in assessments among groups. However, the

suggested protocol can still be modified depending on resources. For
example, flight altitude could be raised as long as the resolution is
maintained lower than 0.5 cm pixel−1, which is possible if the drone is
fitted with a better camera than the one used here. Differences in ac-
cessibility of coastal areas and lack of harmonization among meth-
odologies are two of the main restrictions affecting the development of
standard approaches to beach litter monitoring (Galgani et al., 2013).
The approach reported here overcomes these limitations and is there-
fore suitable for integration in international strategies aimed, among
others, at reducing marine litter and its impact (e.g. the Marine Strategy
Framework Directive of the European Commission).

5. Conclusion

We compared the application of two methodologies to quantify
beach litter: the standard visual census approach and a remote survey
coupled with both manual and automatic recognition and classification.
We showed how remote sensing via the use of an unmanned aerial
vehicle can be a powerful tool to efficiently cover extended areas, while
presenting as a feasible tool to estimate litter amount and state. We
demonstrated that the machine learning based classification was con-
cordant with two independent approaches (i.e. manual and automatic
processing of UAV images), while the abundance over-estimations can
be corrected for by algorithm improvements and iterations. Future
perspectives associated with the proposed work will examine the im-
plementation of the automated methodology following the suggested
steps in order to obtain a product which can be successfully applied on
a higher number of remote surveys, with the final aim of estimating
beach litter density on a high spatial and temporal scale.
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