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The amount of marine litter, mainly composed by plastic materials, has become a global environmental issue in
coastal environments. Traditional monitoring programs are based on in-situ visual census, which require human
effort and are time-demanding. Therefore, it is crucial to implement innovative mapping strategies to improve
the environmental monitoring of marine litter on the coast.
Thisworkpresents a procedure for an automatedUnmanned Aerial System(UAS)-basedmarine littermapping on a
beach-dune system. A multidisciplinary framework, which comprises photogrammetry, geomorphology, machine
learning and hydrodynamic modelling, was developed to process a block of UAS images. The work shows how
each of these scientific methodologies can be complementary to improve and making more efficient the mapping
of marine litter items with UAS on coastal environment. The very high-resolution orthophoto produced from UAS
imageswas automatically screened by random forestmachine learningmethod, in order to characterize themarine
litter load on beach and dune areas, distinctively. Themarine litter objects were identifiedwith a F-test score of 75%
when compared to manual procedure. The location of major marine litter loads within the monitored area was
found related to beach slope andwater level dynamics on the beach profiles, suggesting that UAS flight deployment
and post-processing for beach litter mapping can be optimized based on these environmental parameters.
The described UAS-based marine litter detection framework is intended to support scientists, engineers and de-
cision makers aiming at monitoring marine and coastal pollution, with the additional aim of optimizing and au-
tomating beach clean-up operations.
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1. Introduction
The amount of anthropogenic debris in themarine and coastal envi-
ronments is dramatically increasing (UNEP, 2016; GESAMP, 2019) and
has become a global issue of major concern due to its significant poten-
tial impact on coastal systems (e.g., Islam and Tanaka, 2004), onmarine
life (e.g., Werner et al., 2016) and on human health (e.g., Bergmann
et al., 2015). However, despite the ubiquity of anthropogenic debris
on shorelines globally, observations of their sources, composition and
distributions are still very sparse and inaccurate. Thus, it is crucial to
plan and implement routine environmental monitoring strategy
(e.g., UN Environment, 2017) and standard monitoring protocols for
marine litter (hereinafter, ML) spatial and temporal mapping on
beaches (e.g., Ryan and Turra, 2019; OSPAR Commission, 2010;
GESAMP, 2019). From the environmental and policy perspectives, gath-
ering quantitative information of the load of ML on coasts is fundamen-
tal to understand sources, pathways, temporal trends and to study the
impacts on marine ecosystems. From the engineering point of view,
ML mapping is essential to support the mitigation measures and to op-
timize the clean-up operations.

General guidelines have been already proposed, along with some
operational protocols for comprehensive beach litter assessments and
compilations (e.g., Galgani et al., 2013; GESAMP, 2019). The most com-
mon approaches for ML monitoring along coastlines rely mainly on in-
situ visual census method, which requires a certain number of opera-
tors, it is subjective, human effort-demanding, time-consuming and
spatially limited (Galgani et al., 2013; GESAMP, 2019). To overcome
the visual census constraints, new approaches are required to fasten
and to automate the ML mapping.

In the last decades, the number of applications of UAS (Unmanned
Aerial Systems) has been exponentially increasing in the context of en-
vironmental monitoring and research. In fact, UAS offer a cost-effective
aerial platform for autonomous collection of aerial images with high
spatial resolution for environmental monitoring and coastal analysis
(Capolupo et al., 2015; Gonçalves et al., 2018; Holman et al., 2011;
Manfreda et al., 2018; Turner et al., 2016), agroforestry (Pádua et al.,
2017; Sankey et al., 2017; Torresan et al., 2017), hazard and accidents
overseen (e.g., Pérez-Alvárez et al., 2019), archaeological sites monitor-
ing (e.g., Pérez et al., 2019), among others.

Recent works explored the viability of UAS-based approach for the
detection, identification and classification of ML in coastal areas
(Fallati et al., 2019; Bao et al., 2018; Deidun et al., 2018; Martin et al.,
2018). In these studies, the images acquired by the drone were proc-
essed (one by one) to automatically describe and quantify the presence
and the type of ML on beaches. In this context, drones are preferable to
visual census because they allow ML mapping 40 times faster (Martin
et al., 2018), and more suitable than satellites due to their higher reso-
lution, which allow to identify ML itemswith smallest diameter around
2.5 cm (Bao et al., 2018).

Based on the above-cited previous experiences, the first aspect to
consider for a UAS-based ML mapping procedure is the UAS flight set-
up. The flight altitude chosen to collect image of beach environment
should produce images with spatial resolution appropriate to satisfy
the requirement for ML object detection. This aspect is also related to
the optical properties of the camera, which should mount a high-
quality sensor capable of capturing high resolution images to allow ob-
jects recognition. Besides, UASflight time, speed and coverage should be
convenient in comparisonwith traditional surveys, allowing fast auton-
omous and efficientmonitoring of the area in focus. The second point to
consider is the choice of the image detection technique used to detect
ML objects on images. For instance, Deidun et al. (2018)manually proc-
essed the images to characterize ML items based on material, size and
position, whereas Bao et al. (2018) proposed an image processing
threshold method which exploited Green and Red colour bands to seg-
ment the image and automatically extract the beach ML items. The
threshold-based automated items detection algorithm returned the
areas covered byML, however it had themain limitation of being tested
on a clear and regular beach background, where the presence ofMLwas
well detected in contrast with clear sand. On more complex environ-
ments, machine learning approaches were explored by Martin et al.
(2018) and Fallati et al. (2019). Martin et al. (2018) used a random for-
est (hereinafter, RF) structure and histogram of oriented gradients
(HOG) as a feature descriptor, experiencing significant overestimation
of ML objects due to the presence of vegetation and wood debris,
which affected the performance of detection algorithm. Fallati et al.
(2019) developed a commercial software based on a deep-learning
convolutional neural network (CNN), obtaining contrasting results at
the two considered study sites. Overall, the previous experiences
highlighted that the automated recognition of marine debris on drone
images represents a difficult task not only due to the countless kind of
ML objects that can be found on the coast, but also due to the wide va-
riety of the marine environment characteristics that comprises several
different categories of coastal landforms globally.

In this work, we focus on sandy coasts, extremely dynamic regions
which constitute about the 31% of the world's ice-free shoreline
(Luijendijk et al., 2018). The term “beach-dune system” is commonly
used to indicate sandy coast-sharing system composed by the highly
dynamic beach and more stable coastal dunes, the latest located land-
ward of the beach in the supratidal zone.

Themain objective of this work is to propose a framework for an au-
tomated UAS-basedMLmapping on beach-dune systems. This involved
the development of a multidisciplinary framework which comprises
photogrammetry, geomorphology, machine learning and hydrody-
namic modelling (Fig. 1). The framework is intended to provide a valu-
able tool for biological studies related to marine pollution, and to
support marine environment clean-up operations. Firstly, coastal aerial
mages collected during an UAS flight were used to produce the
orthophoto and the Digital SurfaceModel (DSM) of the beach-dune sys-
tem selected area, through the Structure from Motion - MultiView Ste-
reo (SfM-MVS) technique (Section 2.2). Secondly, this work proposes a
preliminary processing of the DSM to classify the orthophoto regions
based on the geomorphological characteristics of the monitored area,
in order to distinguish beach and dune areas on the orthoimage
(Section 2.3). Thirdly, a RF machine learning algorithm is applied to au-
tomatically detect the ML items on the beach and the dune areas iden-
tified in the orthophoto (Section 2.4). Finally, the beach profile
gradient was used to model wave hydrodynamics on the beach profile,
to investigate towhat extent foreshore hydrodynamics can give insights
about ML load location, pathways and resident time on the beach-dune
system (Section 2.5). Section 3 reports the results of the proposed mul-
tidisciplinary approach, while Section 4 discusses the advantages and
backwards of our approach in comparison to previous similar works.

2. Methods

2.1. Study area

The case study is Cabedelo Beach (40°08′12.8″N - 8°51′47.5″W), a
sandy coastal stretch located on the western Portuguese coast facing
the North Atlantic Ocean (area 5, Iberian coast, OSPAR Commission,
2010). The beach area extends for about 500 m cross-shore, with a
NO-SE orientation, and it is limited northwards by a 1 km-long jetty,
southwards by a 90 m-long groin, backward by a dune system with
alongshore height variability between 7 m and 10 m (Fig. 2). The
beach shore is located southward Mondego River estuary, at a cross-
shore distance of about 1 km from the spit. The area in focus is a sector
of Cabedelo beach (Fig. 2) that extends for 200malongshore. This sector
was selected as case study since it is exposed to high potential for
beaching of anthropogenic debris coming from the estuary.

At the study site, the tidal regime is mesotidal, with average ampli-
tude of the astronomical tide in the order of 2.10 m, reaching a maxi-
mum elevation of 4 m during spring tides (Antunes and Taborda,



Fig. 1. Flowchart of the UAS-based multidisciplinary approach methodology for ML mapping on a beach-dune system.
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2009). The dominant wave regime is characterized by waves coming
from NW with average significant heights of 2 m and periods from 7 s
to 15 s (Dodet et al., 2010).
2.2. UAS-based photogrammetric workflow

Amultirotor quadcopter DJI Phantom 4 Pro, was used to collect high
resolution aerial images on 15th of February 2019. This UAS is equipped
with a 3-Axis gimbal where a 1-inch 20-megapixel CMOS (Complemen-
tary Metal Oxide Semicondutor) sensor (camera model FC6310, 24mm
full-frame equivalent) with a mechanical shutter is mounted. The
multirotor category of drone was preferred to a fixed-wing drone be-
cause is easier to manoeuvre, less expensive, and requires a smaller
area to land and take off.

The flight plan was drawn up on DroneDeploy (https://www.
dronedeploy.com), a freeware mobile application (Fig. 3). The software
allows to define the UAS flight parameters, namely the nominal flight
height, the front and side image overlap, geometry of surveyed area,
Fig. 2. Study site. a) Map of Portugal with study site location (red star), and position of RAI
(Section 2.5); b) picture taken at the study site from the dune crest, looking southward; c) lo
the local datum coordinate system.
camera settings (ISO, shutter speed and aperture) and flight mapping
speed.

A preliminary test was conducted beforehand flying at 20, 40 and
60 m altitudes above mean sea level. After analysis, the drone was set
to fly at an altitude of 20 m to satisfy flight autonomy, coverage and
image resolution. In fact, this altitude allowed to obtain the final
image nominal spatial resolution, expressed in ground sample distance
(GSD), of about 5.5 mm, suitable for the aim of detecting meso-litter
items (size between 2.5 cm and 50 cm) on the orthophoto map. The
camera gimbal was set to −90° to capture photos perpendicular to
the direction of the flight. Images with a resolution of 4864 × 3648
pixels were recorded and overlapped with 80% front and 70% side
rates. The ISO, shutter speed and aperture were set to 100, 1/1250 s
and f/3.2, respectively. These flight parameters are in linewith previous
similar works (Fallati et al., 2019; Bao et al., 2018; Deidun et al., 2018;
Martin et al., 2018).

Prior the flight, six ground control points (GCPs) targetswere placed
within the study area (Fig. 3). These targets were surveyed with NTRIP
RTK-GPS in order to perform a correct post-georeferencing of collected
A offshore wave buoy (blue circle) whose data were used for hydrodynamic modelling
cation of the study area sampled with drone (red rectangle) shown on orthophoto with

https://www.dronedeploy.com
https://www.dronedeploy.com
Image of Fig. 1
Image of Fig. 2


Fig. 3.Drone flight experience. a) Droneflightmissionwith DroneDeploy app (screenshot). Location of GCPs are superimposed onflightmap (red crosses); b) picture of DJI Phantom4 Pro
on the field during the flight; c) snapshot of the monitored area taken by the drone.
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images. Alongwith GCPs, additional points were surveyed in the area as
independent check points (CHP) for assessing the geometric accuracy of
the derived geospatial products.

The two complementary geospatial products, namely the Digital
Surface Model (DSM) and the related orthophoto beachmap, were pro-
duced applying a Structure fromMotion - MultiView Stereo (SfM-MVS)
photogrammetric processing workflow to the image block collected
during the flight. This workflow was performed into four steps. In the
first step, the camera self-calibration and the Bundle Bloch Adjustment
(i.e. image triangulation) were performed simultaneously in order to
compute the internal camera parameters (including non-linear lens dis-
tortions) and the external orientation parameters of all images (in an ar-
bitrary 3D Cartesian coordinate system). A sparse 3D point cloud was
generated, which, in the second step, was georeferenced with the
image block by tagging Ground Control Points (GCP) on the images
where the targets were visible. When a sufficiently large number of
GCPs have been tagged, the camera's internal orientation parameters
were refined by using an optimization procedure. In the third step, a
DSMwas interpolated in the 3Ddense point cloudwhichwas generated
by a MVS dense matching technique from the image block with the op-
timized internal and external orientation parameters. Finally, the DSM
was used for producing the orthophoto. In this work, Agisoft Metashape
(v1.5.3) was chosen as SfM-MVS photogrammetric processing software
package.
2.3. Geomorphological classification

We designed a procedure to distinguish the different geomorpho-
logical entities on the beach-dune system, namely beach and dune
areas, on the orthophoto. The segmentation of the orthophoto prior
the application of the detection algorithm (Fig. 1) is opportunistic be-
cause the areas are expected to have different background (sand for
beach and vegetation for dune), which can be used to improve ML de-
tection. In addition, in the perspective of supporting clean-up opera-
tions, beach and dune will have different type and load of ML items
(e.g., de Francesco et al., 2018; Poeta et al., 2016).
Afirst step aimed to detect the instantaneous shoreline, here defined
as the edge between water and wet (saturated) sand (e.g., Boak and
Turner, 2005). Colour RGB images of a shore show a visual contrast be-
tween thewater and sub-aerial sand beach, caused by the absorption of
the Red light component and the reflection of the Green or Blue light
component by a water covered surface (e.g., Su and Gibeaut, 2017;
Lillesand et al., 2014). A series of parallel transects were sampled over
the alongshore dimension of the orthophoto to extract the RGB pixel in-
tensity, covering the entire cross-shore dimension of the monitored
area (Fig. 4a). The ratio Red:Green colour bands was selected to identify
the instantaneous shoreline location at each transect (SHX). The limit
was set at the Red:Green ratio value of 1.04, based on previous experi-
ences with coastal video imaging and shoreline detection (Almar
et al., 2012; Andriolo, 2019; Andriolo et al., 2019).

A second step aimed to identify the boundaries between the geo-
morphological zones on the orthophoto map, namely beach and dune.
Numerous methodologies exist to classify coastal images based, for in-
stance, on pixel semantic segmentation (e.g., Hoonhout et al., 2015)
and object-oriented clustering (Quartel et al., 2006). However, these
techniques can be computationally demanding and not fully automated
(Quartel et al., 2006).

We propose a morphology-based classification of the beach-dune
system (Fig. 4b). The beach area is generally defined as the zone com-
prised between the shoreline location SHX and the dune toe position
DTX (e.g., de Almeida et al., 2019). The latest indicates the boundary be-
tween beach and dune (also called dune foot). The dune toe DTX corre-
sponds to the location of maximum slope change in the profile between
the shoreline SHX and the dune crest (DCX), which is the highest point of
the beach profile (e.g., Brodie et al., 2019; de Almeida et al., 2019),
where the slope changes sign from positive (landward facing) to nega-
tive (seaward facing). The dune heel (DHX) is located insteadwhere the
maxima slope change seaward the dune crest (e.g., Stockdon et al.,
2009; Wernette et al., 2016). Hence, the dune area is considered as
the zone comprised between the dune toe DTX (seaward) and the
dune heel DHX (landward).

The same series of parallel transects previously used to sample RGB
pixel intensity on the orthophotowere sampled over theDSM to extract

Image of Fig. 3


Fig. 4. Geomorphological analysis of geospatial products. a) Orthophoto map and series of parallel profiles (cyan lines) used to sample pixel intensity (upper). Lower, an example of Red:
Green ratio profile obtained sampling one of the pixel transect (cyan lines), which is underlined as red dashed line on the orthophoto; b) DSM of the study area (upper) and an example of
beach profile (lower) sampled at the transect indicated by the dashed red line on theDSM. On beach profile, an example of specific points encountered by the proposed technique, namely
dune toe (DTX, blue triangle), dune crest (DCX, red cross) and dune heel (DHX, black triangle). The lowest graph shows the first derivative of the beach profile, whichwas used to findDTX
and DHX.
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the beach profiles over the alongshore dimension (Fig. 4b). These pro-
files were automatically processed to identify the location the geomor-
phological indicators, namely DTX, DCX and DHX. At each transect, DTX
was found computing the first derivative of the beach profile and
searching for themainmaximumpeak seaward the dune crest position,
similarly to Brodie et al. (2019), while DHXwas foundmarking the local
minima of the first derivative landward DCX (Fig. 4b).

In the final step, the area covered by water and the zone landward
the dune area were cropped from the orthophoto map. Therefore, two
different extracts were produced, one representing the beach area, the
second one representative of the dune area.

2.4. Random forest

In order to automatize the detection of ML items on the orthophoto,
we explored the feasibility of a pixel-level classification scheme based
on amachine learning classifier and colour intensity feature descriptors.
This choicewas based on the rational that: i)ML itemshave colour spec-
trum properties which are distinct from the spectra of surrounding en-
vironment; ii) these properties can be used successfully by a state-of-art
supervised classifier such as RF classifier (Belgiu and Drăgu, 2016). In
fact, due to its accuracy, speed, robustness against overfitting, and rela-
tively easy interpretation, the RF classifier has become quite popular
among the remote sensing community (Belgiu and Drăgu, 2016). This
powerful classifier, has shown to be competitive when compared with
highly regarded classifiers like support vector machines (La Rosa and
Wiesmann, 2013).

The RGB colour space is perhaps the most widely used one to repre-
sent digital colour images. However, from an image processing point of
view, RGB space has some important drawbacks: it is sensitive to illumi-
nation intensity, the three channels are highly correlated, and in general
it is not perceptually uniform (Li and Yuen, 2002; Wang et al., 2011;
Yang et al., 2010). To overcome the limitations of the RGB colour
space, it is common practice of image processing technique to convert
the RGB colour space into a different colour space. Due to their superior
performance in several segmentation and classification tasks, the most
popular choices are the HSV, the CIE-Lab, and the YCbCr colour spaces
(Fairchild, 2013). Usually, these colour spaces have been used in numer-
ous image segmentation and classification applications, as they are
more appropriated to identify colour characteristics over variable condi-
tions (Kataoka et al., 2012; Shaik et al., 2015). Despite the drawbacks,
the RGB colour space has also been used with good results in some ap-
plications (e.g., Feng et al., 2015).

A RF is a machine learning algorithm that is based on the ensemble
of multiple decision trees. Each decision tree is built by randomly
selecting a subset of training samples and features. When the RF is
trained a new sample is classified by majority voting of the decision
trees. These properties, namely, the fact that the final classification is
made by a large number of weak classifiers (the decision trees) which
are built based on random procedures, are the main reasons for the RF

Image of Fig. 4
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robustness against overfitting. Three of the most important parameters
in a RF are the number of trees ensemble (Ntree), the depth of the trees
(MaxDepth), and the number of feature descriptors available for selec-
tion at each tree node (Mtry) (Belgiu and Drăgu, 2016).

In RF classifier, feature descriptors are used to define image charac-
teristics in vectors. In thiswork, the pixel intensity values of the four col-
our spaces were selected as feature descriptors. Therefore, we
converted the orthophoto into the three additional colour spaces
(HSV, CIE-Lab, and YCbCr). Each of these colour spaces are composed
by three channels, thus adding the RGB colour channels, the feature de-
scriptor vectorwas composed by12 features. Other relevant parameters
are the fraction of available training data to sample from, known as the
in-bag-samples, and the method to split the data at each tree node.
Here, the fraction of in-bag samples was set to two-thirds and the split-
ting criterion is the one based on the Gini index (Breiman, 2001). The
fraction of out-of-bag samples (i.e., the samples that are not in-bag sam-
ples) can be used in a kind of internal cross-validation scheme to evalu-
ate the performance of a RF classifier (Breiman, 2001). The calculation of
this so-called out-of-bag error requires extra computational time and its
reliability is not fully understood (Belgiu and Drăgu, 2016). Hence, the
performance of our RF method is based on a subset (the testing set)
which is completely independent from the training set. To find the
best value for the more relevant parameters (namely Ntree, MaxDepth,
and Mtry) we run a series of trials were the value of each parameter is
sample from a range of values. In this work, the Ntree range of values
was 20, 40 and 60; the MaxDepth range was 20 and 30, and Mtry
range was from 4 to 12 with a step size of 2.

Prior the RF application, a manual procedure was performed on the
training and test areas drawing the shape path over the edges of the ob-
jects, in order to produceML itemmasks useful for training and test the
RF algorithm. Afterward theRF classification, the centroid of all the pixel
regions labelled asML items by the algorithmwas compared to the cen-
troids of ML objects regions encountered by the manual procedure.
When the distance between the centroids were smaller 30 pixels (or
16.5 cm, set-up threshold), the detection was marked as true positive
(TP), otherwise as false positive (FP) when labelled region did not coin-
cidewith aML item. Finally, all theML items not encountered by the au-
tomated algorithm were numbered as false negatives (FN).

To measure the RF performance, we calculated precision (P) and
sensitivity (S). The precision is defined as:

P ¼ TP
TP þ FP

ð1Þ

where TP and FP denote true positives and false positives, respectively.
The sensitivity (S) is defined by:

S ¼ TP
TP þ FN

ð2Þ

with FN the false negatives.
A usual measure that combines P and S is the F-score (F), which is

given by:

F ¼ 2
P S
P þ S

ð3Þ

The F value varies from 0 (worst result) and 1 (perfect classification).

2.5. Hydrodynamic modelling

On beach-dune systems, the ML items are often moved by waves
andwind, therefore it is of interest to integrate theUAS-basedMLdetec-
tion to the description of these environmental factors for a deeper un-
derstanding of items dynamics. In particular, we investigated if the
modelling of wave hydrodynamics on the beach-dune system profile
may be helpful to predict the position of major ML loads and to under-
stand ML pathways on the backshore and on dunes.

The rhythmic movement of a wave running up and down the beach
face is commonly indicated by the term “swash”, while the measure of
the swash vertical extent on a beach or structure above the still water
level is referred as “wave runup”. Numerous formulations have been
proposed to predict wave runup on beaches (e.g., Atkinson et al.,
2017; Power et al., 2019; Stockdon et al., 2006; Vousdoukas et al.,
2012¸ Melet et al., 2018), mostly computing the water elevation as a
function of offshore wave conditions and intertidal beach slope. We
used the formulation proposed by Atkinson et al. (2017), which esti-
mated the wave runup contribution as:

Rup ¼ 0:99tanβ
ffiffiffiffiffiffiffiffiffiffi
LoHo

p
ð4Þ

where Ho and Lo are the deep-water wave height and wavelength, re-
spectively, and tanβ is the beach slope parameter. In order to calculate
the total water level (TWL) on the foreshore slope, the tidal elevation
time series was added to wave runup contribution as:

TWL ¼ Rupþ η ð5Þ

where η is the tidal level.
We computed the TWL for the 15 days prior the flight day. For the

aim, the wave data (Fig. 5) were retrieved from the dataset of the
RAIA buoy (http://raia.inesctec.pt, refer to Fig. 2 for buoy location),
while the tidal level was predicted at the study site (http://webpages.
fc.ul.pt/~cmantunes/hidrografia/hidro_mares.html). Beach slope was
measured on the DSM (Section 2.3), considering the interval of the
beach profile elevation between 1 m and 3 m, corresponding to the in-
tertidal area.

3. Results

This section reports the results obtained by SfM-MSV photogram-
metry and beach geomorphological characterization (Section 3.1), by
RF detection algorithm (Section 3.2) and the hydrodynamic modelling
(Section 3.3). Using these results, a ML density maps was produced to
evaluate the location ofMLmajor loads in relation to the environmental
parameters (Section 3.4).

3.1. Beach-dune system

The geomorphological analysis allowed to characterize the beach-
dune system profile. The average beach slope was gently, about 4°
(tanβ = 0.07). Dune toe elevation was found between 5 m and 9 m,
dune crest height between 7 m and 10 m, both increasing from the
northern sector to the south. The average foredune slope, computed be-
tween DTX and DCX, was about 16° (tanβ = 0.3).

Considering altogether themark ofwater line found fromRed:Green
ratio, the dune toe and the dune heel locations found from the DSM, the
orthophoto map was split in two different maps, one representing the
beach region, the second one the dune region (Fig. 6). Beach cross-
shore extent varied between 35 m and 70 m, with shortest extent on
the northern sector of the image, increasing southward. The dune re-
gion area did not vary significantly over the cross-shore dimension,
with an average span of about 25 m. Hence, the portion of orthophoto
representing the beach region (10.50 m2) was about double in size
than the one showing the dune area (5 m2).

The beach area background was mostly composed by sand (Fig. 6).
The wet sand, closer to the shoreline, was represented by dark brown
pixel, as a result of sand saturation determined by swash movements
on the foreshore. In this area, ML is expected to be swashed up and
down the beach profile, therefore the eventual presence of ML items
could be considered as a transitory and momentary (Ryan and Turra,
2019). The area covered by dry sand did not have a homogeneous

http://raia.inesctec.pt
http://webpages.fc.ul.pt/~cmantunes/hidrografia/hidro_mares.html
http://webpages.fc.ul.pt/~cmantunes/hidrografia/hidro_mares.html


Fig. 5. Hydrodynamic time series for the 15 days period prior the drone flight day. Tidal level (upper), significant wave height (middle), wave peak period and direction (lower).
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texture, mostly due to the presence of wood debris, countless footprints
and shadows on the sand. In comparisonwith beach area, the dune area
background was composed by dry sand, vegetation (dark green pixel)
and wood path (light grey pixels).

3.2. Marine Litter detection

To train and test the RF approach, a total amount of six rectangular
ortho-areas weresampled from the orthophoto, namely three ortho-
areas from the beach area, and three ortho-areas from the dune area
(Fig. 7). The six ortho-areas were chosen with the criteria of covering
and sampling regularly the orthophoto. In addition, these six ortho-
areas were highly non-homogeneous, thus suitable to train and test RF
algorithm. In fact, they exhibited different background such as dry
sand, wet sand, footprints, shadows, vegetation, wood debris and con-
siderable amount of ML objects.

The manual identification of the ML recognized a total amount 311
items in the six ortho-areas. These ML objects were digitized on the
screen and then converted to a raster representation (binary masks)
to train the random forest. The algorithm was trained using only 60%
of data, whereas the remaining 40% (159 items) were used as testing
set to evaluate the performance of the method. To reduce computa-
tional time, the six ortho-areas were divided into 1277 blocks, having
a size of 320 × 320 pixels. Each block was resampled by bicubic
Fig. 6. Beach-dune area classification. a) Orthophoto with shoreline (cyan circles), dune toe (
extracted from the orthophoto; c) dune area.
interpolation and resized to 64 × 64 pixels. This image downscaling
step allows also the possibility of working with big size orthophoto
files such as those obtained from processing UAS imagery.

In order to find the optimal RF configuration, we run a series of trials
(see Section 2.4). The best Fwas obtainedwithNtree=60,MaxDepth=
30, andMtry=10. That is, considering a RFwith 60 decision trees, each
tree with a maximum depth of 30, and randomly sampling 10 features
from the available 12.

Table 1 reports the numerical results obtained using this RF configu-
ration. The F-score for beach area (76%), obtained comparing software
output and the manual procedure, highlights the goodness of the RF
set-up and gives the evidence of the suitability of colour-based feature
descriptor approach for ML items detection on the beach. Regarding
dune area, F-score dropped to 57%, suggesting that further refinements,
or a different approach should be taken in consideration to improve the
detection. It is worth noting that the algorithm was training and tested
considering all six ortho-areas together, due to the fact that little num-
ber ofML items on dune ortho-areas did not allow a robust a statistically
reliable computation of the F-score.

Using the trained RF classifier, we performed the classification of the
whole orthophoto. Fig. 8 shows the centroids of the ML items detected
on the beach and dune areas, distinctly, and some examples of items
found. The items were directly identified on the orthophoto, allowing
a detailed spatially geolocation of ML. The algorithm correctly
blue triangles), dune crest (red crosses) and dune heel (green triangles); b) beach area

Image of Fig. 5
Image of Fig. 6


Fig. 7. Results of the detection algorithm in training and testing ortho-areas for beach (left) and dune (right) regions. On the numbered ortho-areas, blue circles indicate theML items that
are identified manually on the orthophoto, red circles the items that were detected by the RF algorithm.
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recognized 118 items, whereas it returned FP for deep shadows, sand-
coloured items and plants. FN were mostly composed by white,
decoloured, and transparent items, such as plastic bottles and plastic
bags (see details in Fig. 8). In general, objects were misclassified when
their spectra values were overlapping non-ML objects, such as vegeta-
tion, sand and wood debris, or overshadowed by other neighbour
objects.

3.3. Hydrodynamics

Fig. 9 shows the TWL computation for the interval of 15 days prior
the flight, between the 27th of January 2019 and the 15th of February,
date of the drone flight. The mean TWL elevation on the beach was of
2.1 m, with a maximum value ranging between 7.5 m and 8.1 m, de-
pending on the considered transect. Maximum values and the dune
crest were reached during the storm of 1st of February 2019.

The TWL computed for the day and timeflight (12:30 on 15th of Feb-
ruary 2019) agreed, when projected on the orthophoto, with the limit
between the dry (bright) sand and thewet (dark) sand. The agreements
proved the goodness of the procedure and formulation (Eqs. (4) and
(5)) for the TWL prediction. The plot of the maximum TWL excursion
Table 1
Results and RF performance for ortho-areas testing set. True positive (TP), false negative
(FN) and false positive (FP) items are reported, along with precision (P), sensitivity
(S) and F-score (F).

AREA Ntree MaxDepth Mtry TP FN FP P S F

Beach 60 30 10 108 32 38 0.74 0.77 0.76
Dune 10 9 6 0.62 0.53 0.57
Total 118 41 44 0.73 0.74 0.75
over the orthophotomap (Fig. 9c) shows that themodelled values coin-
cide with the alongshore shape of the dune.

3.4. Marine Litter density map

Fig. 10 shows the density map of ML load, obtained combining the
analysis of TWL timeseries and the result of automated ML detection.
It can be observed that all ML itemswere detected above the line corre-
sponding to the TWL during the period of drone flight, since objects
below the TWL have being likely swashed out. The major load of ML
was present on the beach area upper the line indicating the 95% percen-
tile of TWL timeseries, corresponding to the elevation of about 4.2 m. In
this area, a large number of marine debris were partially buried or
trapped among wood debris. Therefore, it can be assumed that the
major load of marine debris was transported upper the beach profile
during the storm occurred on 1st of February 2019. Yet, the area of
major load of ML was found at the toe of the dune, where the beach
slope was about 0.12. Fig. 10 shows that the TWL between the day of
the storm and the day of the flight did not reach the elevation where
major density of debris was found (~4.2 m), therefore it can also be as-
sumed that the items present in this area have been lying on the beach
at least for 15 days, if these items were beached by waves.

Considering the monitored area, the ML on the beach was more
present in the southern part of the orthophoto, whereas the major ML
load on dune area was found being in the northern part. As a conse-
quence, the density maps of beach and dune were anti-specular, sug-
gesting that on dune area the ML items accumulated where the beach
slope in front of the dune toewasmilder (seeML density aroundNorth-
ing coordinates 54,540 in Fig. 10).

From the hydrodynamic modelling, it was also verified that
overwash event occurred during the storm of 1st of February 2019.

Image of Fig. 7


Fig. 8. Left: ML items mapped on the orthophoto, represented by their centroid location on beach (orange crosses) and on dune (green crosses) regions. Right: examples of ML items
correctly identified by the RF classifier (letters Ai), recognized complex items (letters Bi), FP (letters Ci) and FN (letters Di). Objects locations are indicated by the corresponding letter
in the orthophoto.
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Observing in details the orthophoto (Fig. 10), the typical sign of
overwash fan can be identified behind the dune crest as wave shaped
(rip forms) left by water on sand that reached the dune heel
(e.g., Matias et al., 2010; Matias et al., 2008).

An overwash event occurs when extreme storm-induced TWL ex-
ceeds the height of the dune: water flow overpasses the dune crest,
transporting sand and depositing it inland (e.g., Matias et al., 2019).
Joining information derived by the visual analysis and ML detection,
we could theorise that the two ML items found on the overwash path-
way may have been transported from the upper beach up to the dune
area by the water flow during the storm. The water flow past below
the posts that have been installed on dune crest to sustain the wood
path, ending its stream at the dune heel.

To be thorough, we report in Table 2 the hierarchical list of ML items
found on beach and dune during in-situ visual census. It can be noticed
that 76% of the items found were composed by plastic. In particular, we
have found fishing strings being themost numerous items on the beach.
About 55% of the total amount of ML can be associated to fishing activ-
ities (fishing strings, octopus pots) and fishing industry operative
within the close harbour (polystyrene and food can).

4. Discussion

4.1. UAS survey

The altitude chosen for the drone flight, 20 m above mean sea level,
was found suitable for the aim of mapping ML on the beach-dune sys-
tem. Higher flight altitude (e.g., 30 m in Deidun et al., 2018) may
allow a faster coverage of the area, however images collected with
higher GSD would affect the performance of the detection algorithm.
On the other end, in the case study, dune crest heightwas found varying
between 7m and 10m, therefore the 10m-flight height used byMartin
et al. (2018) and Fallati et al. (2019) was not applicable, as it may have
required distinct flight heights for monitoring beach and dune areas.

The drone model used in this work (DJI Phantom 4 Pro) was the
same model, or similar, to the one used by previous works for UAS-
based ML detection on beaches (Bao et al., 2018; Deidun et al., 2018;
Fallati et al., 2019; Martin et al., 2018). This UAS required the place-
ments of targets on the ground for producing accurate georeferenced
DSM and orthophoto. Further improvement in using UAS for ML detec-
tion may be given by new drone models (e.g., DJI Phantom RTK) which
do not require the physical placement of GCPs on the terrain, allowing a
faster flight deployment and photogrammetric procedure.

Wind speed and inclement weather conditions, especially strong
wind speeds, are a constraint for this UAS-basedmonitoring framework,
as they limit the deployment of drone flights. In addition, it should also
be taken in consideration that high (N30) and low (b0) air temperature
may negatively affect the performance of drone batteries and thus the
success of drone campaign. Besides, at the Portuguese coast, we have
experienced the odd behaviour of seagulls, massively present on the
shore, which approached and endangered the operability of drone dur-
ing the flight.

4.2. Geomorphology and hydrodynamics

It was shownhow the geo-based classification of the beach anddune
area can improve the insights of ML load on the coast. It is of interest to
underline for future works that the geomorphological classification of

Image of Fig. 8


Fig. 9. TotalWater Levelmodel. a) TWL time series over the 15days previous the drone flight; b) TWL time series plotted on the corresponding position on the orthophotomap; c) average
TWL over the 15 days (yellow crosses),modelled TWL at the time of drone flight (blue circles), 95% percentile of TWL time series (green diamonds) andmaxima TWL reached over the 15
days-time series (red circles).
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beach-dune does not depend on drone flight altitude, since the beach
profile description does not require high resolution images. The
discretization of the beach-dune areas, derived by DSM analysis, was
opportunistic for numerous aspects.

Firstly, on sandy beaches the beach area is generally not vegetated,
whereas grass and bio species are typically present on dunes. Knowing
these characteristics, different detection algorithms can be chosen to
analyse beach and dune areas in the orthophoto map. On the beach,
ML items were found mostly lying on sand and/or among wood debris,
whereas on dunes objects weremostly trapped by grass and vegetation.
Further works should investigate if multispectral and/or thermal cam-
eras may facilitate and/or improve the ML detection on dune area,
where the recognition of items is more problematic due to vegetation.
Secondly, it is expected to find different kind of ML items on beach
and on dunes, with different resident time, as the beach is a more dy-
namic environment and washed constantly by waves, whereas dune
system is a less active zone influenced by wind and extreme wave
events. In fact, the shoreline morphology and the beach gradient
have a great influence to ML beaching, moving track and accumula-
tion, as found for instance by Haarr et al. (2019) and Turrell
(2019). Our approach could also be complementary to these works,
which did not take in consideration beach hydrodynamics. Finally,
the beach profile extraction from DSM also supported wave runup
modelling and the reconstruction of TWL time series at the study
site. The formula of Atkinson et al. (2017) predicted fairly the
water level excursion on the foreshore, although the performance
was evaluated only visually. Other formulations were tested (Poate
et al., 2016; Stockdon et al., 2006; Vousdoukas et al., 2012), returning
similar values for wave runup.

We showed that the analysis of wave hydrodynamics can carry in-
teresting and helpful insights regarding the position, the pathway and
the load of ML items on beach-dune systems. The major load of ML
was found lying above the 95% percentile of TWL timeseries, suggesting
that drone flight plan can be optimized in time and space prior the field
experience knowing wave data and beach slope. Moreover, the identifi-
cation of overwash occurred during storm allowed to deduct pathways
and resident time of some ML items found on dune area. The recogni-
tion of overwash occurrence is an important factor for beach
morphodynamic studies and coastal risk assessment (e.g., Vousdoukas
et al., 2012). In this perspective, the UAS-based approach for ML detec-
tion can be exploited to create a record of coastal surveys, which can
support beach-dune system evolution analysis through the DSMs
dataset.

Inmodelling beach hydrodynamics, we did not take in consideration
wind forcing on the beach. Although wind data were available, relating
the displacement of ML on beaches to wind blowing is a difficult task
yet, especially if high-frequencymonitoring is lacking. Besides, available
wind data are traditionally sampled on an elevated position (~10 m)
and may not represent the actual wind speed on the ground. Finally,
the capacity of wind to move an object lying on beach surface is related
to theweight of the item,which is a difficult property to guess by image-
based technique.

Image of Fig. 9


Fig. 10.Map of ML density on the orthophoto coupled to TWL statistics. Above: ML density on beach and dune plotted on the orthophoto. Coloured lines represent average TWL position
(yellow), instantaneous TWL during the drone flight (blue), 95 percentile (green) and maximum TWL (red) computed considering the 15 days prior the experience. Below: Details of
overwash pathway visible on orthophoto, with direction of water flow (blue arrows), overwash fan (black line) and two ML items present on the overwash pathway (violet boxes).
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4.3. Random Forest

The use of random forest classifier on a UAS-basedML detectionwas
already proposed by Martin et al. (2018), nevertheless our colour fea-
ture descriptors approach was more successful than HOG, which
showed to return a larger number of FP and a lower F-test score
(44%). We also investigated (but not shown) some of the haralick
texture-based features (Haralick, 1979; Haralick et al., 1973), however
lower efficacy and/or not significant improvements in detection were
obtained. In terms of performance, our results were similar to the
ones obtained by Fallati et al. (2019), which implemented a deep-
learning convolutional neural network (CNN). Table 3, shows a compar-
ison of the results obtained by above-cited authors. Nevertheless, com-
parison among the automated algorithms proposed by above-cited
authors are limited by the diverse local environment characteristics,
the number and size of testing areas and, more generally, by the differ-
ent sum of items present on the shore and/or visible on image.

Besides these observations, we underline that in thiswork the detec-
tion algorithm was applied directly on the whole orthophoto image,
therefore an accurate georeferenced map of ML load was produced
(Fig. 10), whereas previous similar works limited the detection on the
individual images taken by the UAS (Fallati et al., 2019 and (Martin
et al., 2018). The use of the orthophoto image also allowed to measure
the dimensions of the ML items identified by the RF algorithm, whose
sizes were comprised between an area of 2 cm2 and 1200 cm2. This res-
olution, obtained using theDJI Phantom 4 Pro camera and flying at 20m
above MSL (Section 2.2), is suitable to carry outmeso-litter and macro-
litter items detection (OSPAR Commission, 2010).

Image of Fig. 10


Table 2
Characterization of marine litter items found on the study area from visual census.

Number of items % Material %

Bottles 54 13 Plastic 76
Bottles N2 L 7 2
Fishing strings 160 37
Plastic (fragments, caps ecc.) 83 19
Octopus pot 21 5
Boots/shoes 3 1 Rubber 1
Tyre 1 0
Clothing 4 1 1
Sheet/journals 9 2 Paper 2
Wood pieces 23 5 Wood 5
Cans (aerosol and food) 6 1 Metal 1
Bottles 10 2 Glass 2
Polystyrene pieces 48 11 Polystyrene 11

429

12 G. Gonçalves et al. / Science of the Total Environment 706 (2020) 135742
The major limitation of RF and colour feature descriptors is the defi-
ciency in describing the type and composition of ML items. Neverthe-
less, as shown in Fig. 10, the technique is suitable and reliable for
supporting ML abundance surveys. A second limitation is represented
by the requirement of manual masks of ML items on the training
areas. In addition, suggesting that this type of machine learning algo-
rithm can be usedmerely for anML abundance survey. Themanual pro-
cedure, which was performed in a GIS environment, can be tedious and
time-demanding. In comparison with HOG features (Martin et al.,
2018), the algorithmdid notmiss the recognition of partially buried ob-
jects, and footprint shadows did constitute an issue as for deep-learning
CCN (Fallati et al., 2019). On the other hand, on the dune area consid-
ered in this work, colour feature descriptors falsely identified as ML
the Carpobrotus edulis plant due to its reddish leafs/blooms (see north-
ern area of dune density map in Fig. 10).

Overall, as previously underlined by the above-cited works, the de-
velopment of a universal algorithm for automatically detectsML objects
on the coast remains a difficult task due to the several environmental
and technical variables involved.
4.4. Best-practise optimization

In futureworks, wewill extend the area and themonitoring interval,
experimenting short-term high frequency flights surveys for character-
izing the trend inML items loads on a beach-dune system. As suggested
by our results, particular attention should be given to the influence of
(meso)tidal excursion level and to TWL time series prior and during
the drone survey, which may have a great influence on ML load and lo-
cation, along with resident time and displacement. In this perspective,
high-frequencyflights can help in the discretization between theMLde-
posited and moved by wave runup on the beach profile and items left,
for instance, by beachgoers. We will also implement new surveys fol-
lowing OSPAR guideline, choosing to monitor and survey 100 m and
1 km sectors (OSPAR Commission, 2010). This would allow to support
and to improve the OSPAR ML detection programme started in 2013
(https://odims.ospar.org/).
Table 3
Comparison of results obtained by the currently published ML detection algorithms. True
positive (TP), false negative (FN) and false positive (FP) items are reported, along with
precision (P), sensitivity (S) and F-score (F).

Reference Method ML TP FN FP P S F

Martin et al.,
2018

Random forest
(HOG)

415 164 251 1941 0.08 0.40 0.13

Fallati et al.,
2019

Convolutional neural
network

132 57.9 74 48.9 0.54 0.44 0.49

This work Random forest
(4 colour spaces)

159 118 41 44 0.73 0.74 0.75
Regarding this, we will improve ML detection algorithm to charac-
terize automatically and/or manually the type of ML items. To date,
one of major limitations in UAS-based approach is the impossibility of
detecting microplastic particles (below 5 mm, e.g. Ryan and Turra,
2019; Frias and Nash, 2019) due to the insufficient spatial and spectral
resolution of the UAV cameras. However, the exponential technological
improvements in UAS and payloads may close this gap in the near
future.

5. Conclusions

This work presented an example of framework to map ML on a
sandy beach-dune system by UAS, based on a multidisciplinary ap-
proach able to fasten and automate the detection of coastal litter on
the littoral.

The framework involved the use of UAS photogrammetry methods,
geomorphology analysis, machine learning approach and hydrody-
namic modelling. Geomorphology analysis allows the distinction of
beach and dune areas on the orthophoto image for an optimized detec-
tion and analysis of marine litter loads on the two areas. Modelling of
swash-runup process can be used both for a first guess of marine litter
loads location, and to estimate the resident time of the items on the
beach-dune system.Machine learning random forest classifier automat-
ically detects the items on the orthophoto image, allowing a detail map-
ping of marine litter load on real world coordinates. It was shown that
each of these scientific methodologies are complementary, and how a
multidisciplinary approach can improve the flight planning and the ef-
ficiency of marine litter mapping using UAS. At the case study, results
suggest that marine litter most-likely location on foreshores and dune
areas can be predicted using a hydrodynamic model, reproducing the
total water elevation time series on the beach slope. The framework de-
scribed in this paper can contribute to the achievement of a best-
practise protocol for marine litter monitoring on sandy beach-dune sys-
tem, and in general to a standardization of the procedures to map ma-
rine litter abundance on the coast.

UAS-based marine litter detection can support biological sciences,
for instance increasing the number of coastal surveys for studying the
pollution impact on marine ecosystem. Besides, it can help engineering
and decisionmakers tofind efficientmitigationmeasures to coastal pol-
lution, with particular focus in optimizing and automating the clean-up
operations.
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